QUANTUM ARCHITECTURES AND COMPUTATION

Language-Integrated Quantum Operations (LIQUi|>) Simulator User's Manual

$$
\begin{array}{r}
\mathrm{LQQUi} \mathrm{\|} \\
\\
\\
\text { User's } \\
\text { Manual }
\end{array}
$$

QUANTUM ARCHITECTURES AND COMPUTATION LIQUi|〉 Users Manual

V3.620160517

BY DAVE WECKER

Copyright © 2015,2016 by Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399
Phone (425) 882-8080 • Fax (425) 706-7329

Table of Contents

Eble of Contents 2
List of Figures 3
List of Examples 4
Equations 6
Introduction 7
Suggested References 9
Obtaining the Software 10
Concepts and Data Types 11
Basic Operation 15
Creating a script. 17
Advanced Topics 25
Serious Coding 30
Data Types 31
Built-in Gates 35
Gate and Qubit Operators 38
Extending the Simulator 40
Custom Gates 40
Rendering 46
Circuit Manipulation. 51
QECC: Quantum Error Correction Codes 54
Stabilizers 60
Advanced Noise Models 66
Full Example 67
Amplitude Damping 70
Noise + QECC 71
Channels and POVMs 73
Hamiltonian Mode 77
Spin-Glass simulation 78
Fermionic simulation 82
Quantum Chemistry 85
Quantum Chemistry Options 87
Quantum Chemistry Output 90
Built-in Samples 96
Index 101

List of Figures

Figure 1: The LIQUi|> Platform Architecture 8
Figure 2: Bloch Sphere representation of a Qubit 12
Figure 3: Entangle2(10) circuit drawing (HTML and LaTeX) 23
Figure 4: Basic Teleport Circuit 25
Figure 5: High level Teleport QECC circuit (LaTeX version) 26
Figure 6: Low level Teleport QECC circuit (HTML version) 27
Figure 7: Error Insertion 28
Figure 8: Liquid project 30
Figure 9: Main.fs 31
Figure 10: Sample drawing from LiquidTikX.tex 47
Figure 11: Rendering of a complex circuit (high level) 49
Figure 12: Rendering of a complex circuit (low level) 50
Figure 13: Steane7 Prep Circuit. 56
Figure 14: Steane7 Syndrome Circuit 58
Figure 15: Circuit for Noise Analysis 67
Figure 16: Output from Noise run 69
Figure 17: Noisy Teleport sensitivity to errors 77
Figure 18: Typical Annealing Schedule. 78
Figure 19: 12 Qubit ferromagnetic chain 81
Figure 20: 12 Qubit ferromagnetic chain (grown) 81
Figure 21: Molecular Hydrogen Energy Spectra 84
Figure 22: Water Energy vs. Bond Length and Angle 85
Figure 23: Output from QLSA sample 98

List of Examples

Example 1: Command Line Syntax 16
Example 2: Command line function execution 16
Example 3: UserSample - Extending the simulator. 17
Example 4: Script Header 17
Example 5: User script module 18
Example 6: Entanglement circuit 19
Example 7: Running Entangle1 20
Example 8: Entangle1 running from a script. 20
Example 9: Entangle1 from a pre-built DLL 20
Example 10: Single Entanglement circuit. 21
Example 11: Circuit Compilation and running. 21
Example 12: Entangle1 with optimization run times 21
Example 13: Dump of Teleport Circuit 21
Example 14: Dump of Entangle2(2) Circuit 22
Example 15: Optimized Entanglement circuit 22
Example 16: Rendering a circuit 22
Example 17: Sample numbers to factor. 24
Example 18: Factoring 65 with Shor's algorithm 24
Example 19: Teleport circuit definitions 25
Example 20: Mapping a Logical to a Physical circuit 26
Example 21: Injecting errors for QECC 27
Example 22: Running a Stabilizer simulation 28
Example 23: Obtaining QECC results. 29
Example 24: Output of Stabilizer run 29
Example 25: UserSample execution 31
Example 26: Starting Teleport in fully interactive mode 31
Example 27: Creation of a Ket from fsi 32
Example 28: Obtain Qubits from state. 32
Example 29: Run teleport in fsi 32
Example 30: Printing out Qubit values. 33
Example 31: Teleport with an interesting initial state 33
Example 32: Results from non-trivial teleport 33
Example 33: Circuit data structure 34
Example 34: Creating teleport as a new Gate 35
Example 35: Creating a simple gate. 35
Example 36: Map with arguments operator. 38
Example 37: Build a Qubit list operator 39
Example 38: Gate constructor 40
Example 39: CNOT Gate implementation 42
Example 40: Measurement Gate definition 43
Example 41: Reset Gate definition 43
Example 42: Restore Gate definition 43
Example 43: Adjoint Gate defintion 44
Example 44: Control Gate definition. 44
Example 45: Native Gate definition 45
Example 46: Binary Control Gate definition 45
Example 47: Wrap Gate Implementation 46
Example 48: CNOT Render instructions 48
Example 49: Rendering Wrap gates 49
Example 50: Compiling a Circuit 51
Example 51: Steane7 constructor definition 55
Example 52: Logical values for Steane7 55
Example 53: Steane7 preparation Gate. 56
Example 54: Fix a detected error in Steane7 57
Example 55: Full syndrome Gate for Steane7 58
Example 56: Steane7 override definitions 58
Example 57: Transverse gate dictionary 59
Example 58: Default Gate replacement function 59
Example 59: Decode implementation for Steane 7 60
Example 60: Teleport of $|1\rangle$ with final measurement 61
Example 61: Running the tele1 function 61
Example 62: tele1 result 61
Example 63: Stabilizer simulation of tele1 61
Example 64: Final Stabilizer tableau 62
Example 65: Gaussian Stabilizer tableau 62
Example 66: QECC teleport Stabilizer tableau 63
Example 67: Running teleport with QECC under a Stabilzer simulation 63
Example 68: Decoding QECC output 64
Example 69: Command line QECC test with Stabilizers 64
Example 70: Create a noise model 67
Example 71: Noise options 68
Example 72: Running the noise model 68
Example 73: Output from noise run 69
Example 74: Noise final summary 70
Example 75: Advanced Noise plus QECC 72
Example 76; New noise techniques 72
Example 77: AD (Amplitude Damping) Gate 73
Example 78: DP (Depolarizing Noise) Gate 74
Example 79: Build a noise channel 74
Example 80: Application of the noise channel. 76
Example 81: Noisy standard gates 76
Example 82: Noisy Teleport. 76
Example 83: Output from 1000 runs 77
Example 84: Spin constructor (1) 79
Example 85: Spin Constructor (2) 79
Example 86: Ferromagnetic script 80
Example 87: Output from Ferromagnetic run 80
Example 88: H2 Fermoinic dictionary definition 82
Example 89: Solution for H 2 molecule 84
Example 90: Calling the __Chem function 86
Example 91: Running your own molecule 86
Example 92: H2O Term Expectations 90
Example 93: H2O log, parameters 91
Example 94 H 2 O log, loaded terms 91
Example 95: H2O log, sample term dump 91
Example 96: H2O log, gate statistics 92
Example 97: H2O log, Phase Estimation 93
Example 98: H2O log, final result 93
Example 99: QuAM: Storing key value pairs 98
Example 100: QuAM: Searching for a key 99
Example 101: Spin Glass couplings 100
Example 102: TSP optimizatoin result 100
Example 103: TSP Final Route 100

Equations

Equation 1: State Definition 11
Equation 2: Qubit State 11
Equation 3: Qubit as angles on the Bloch sphere 12
Equation 4: Operations 13
Equation 5: Amplitude Damping Channel 70
Equation 6: Krauss operators 70
Equation 7: Output state 71
Equation 8; Two Qubit Amplitude Damping 71
Equation 9: Adiabatic Hamiltonian 78
Equation 10: Fermionic Hamiltonian 82

Introduction

What is LIQUi|>?

L$\mathrm{IQUi} \mid>$ is a simulation platform to aid in the exploration of quantum computation. LIQUi|〉 stands for "Language-Integrated Quantum Operations". A quantum operation is usually referred to as a unitary operator (U) applied to a column state vector (also known as a ket: $|\cdot\rangle$). The " i " is just a constant scaling factor, hence the acronym.

Currently, there are three classes of simulators built into the system representing different levels of abstraction:

1. Physical Modeling: This is the Hamiltonian simulator which attempts to model some of the actual physics in a quantum system. It differs from the other simulators in that it has the concept of the time it takes for an operation to be performed (since it is numerically solving a differential equation) and can only operate on a small number of qubits (around 30). It is also (by its very nature) slow.
2. Universal Modeling: This is the most flexible of the simulators. It allows a wide range of operations to be performed (including ones defined by the user). It can handle millions of operations (gates) to be executed, is highly optimized for parallel execution and is highly efficient in memory usage. Its main limitation is the number of qubits (~ 30) that can be entangled at one time.
3. Stabilizer Modeling: This simulator has the virtue of allowing large circuits (millions of operations) on massive numbers of qubits (tens of thousands). The main limitation is the types of gates which may be included in the circuit. They are fixed in the system and come from the "stabilizer" class (e.g., Clifford group). This limits the usefulness of the types of algorithms that can be implemented and tested. However, it does allow the design and test of Quantum Error Correction Codes (QECC) which requires large numbers of qubits per logical qubits.

Simulations can be accomplished in several ways:

1. Test mode: Several built-in tests of the system can be invoked from the command line and are useful demonstrations.
2. Script mode: The system can be run directly from an F\# text script (.fsx file). This allows the simulator to be operated by simply running the executable (no separate language compilation required). The entire simulator is available from this mode, but interactive debugging is difficult. Script mode allows users to experiment (with fast turn-around time) as well as being able to "kick the tires" without having to install a complete development environment.
3. Function mode: This is the normal development mode. It requires a compilation environment (e.g., Visual Studio) and the use of a .Net language (typically F\#). The user has the full range of APIs at their disposal and can extend the environment in many ways as well as building their own complete applications.
4. Circuit mode: Function mode can be compiled into a circuit data structure that is extremely general. This data structure can be manipulated by the user, run through built-in optimizers, have quantum error correction added, rendered as drawings, exported for use in other environments and may be run directly by all the simulation engines.

The entire architecture is summarized in Figure 1. Here are each of the major sections:

Figure 1: The LIQUi|> Platform Architecture

Suggested References

References cited throughout this document and generally useful to have

 around (in any case).This manual will not be providing a background in either quantum computation or functional programming. The author suggests the following as good sources of information:

1. Quantum Computation and Quantum Information: This book by Michael Nielsen and Isaac Chuang is an invaluable reference source and I encourage you to obtain a copy. Most of the subjects discussed in the rest of this manual are fully covered in this reference.
2. Programming F\#: A comprehensive guide for writing simple code to solve complex problems: This book by Chris Smith is an excellent introductory text into functional programming and $\mathrm{F} \#$ in particular. If you're serious about developing your own simulations with LIQUi|> I would pick up a copy of either this book, or the following one.
3. Expert F\# 2.0: This book by Don Syme, Adam Granicz and Antonio Cisternino is the book on F\# that I use more than any other. It is available as an eBook as well.
4. The F\# language reference can be found on MSDN (the Microsoft Developer Network) web site at:

$$
\underline{\text { http:// msdn.microsoft.com/en-us/library/dd233181.aspx }}
$$

While the full language reference is maintained at:
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/manual/spec.html
5. Simulation of Electronic Structure Hamiltonians Using Quantum

Computers: This paper by Whitfield, Biamonte and Aspuru-Guzik gives a good background for the fermionic section of the Hamiltonian simulator (http://arxiv.org/abs/1001.3855).
6. More recent quantum chemistry papers (utilizing $\mathrm{LIQUi}\rangle$) include:
a. Gate count estimates for performing quantum chemistry on small quantum computers http://arxiv.org/abs/1312.1695
b. Improving Quantum Algorithms for Quantum Chemistry http://arxiv.org/abs/1403.1539
c. The Trotter Step Size Required for Accurate Quantum Simulation of Quantum Chemistry http:// arxiv.org/abs/1406.4920
d. Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry Simulation http://arxiv.org/abs/1410.8159

7. LIQUi|>: A Software Design Architecture and Domain-Specific Language for Quantum Computing http://arxiv.org/abs/1402.4467

8. Additional information about the Microsoft Quantum Architectures and Computation group may be found at: http://research.microsoft.com/QuArC along with the LIQUi|> project page at: http://research.microsoft.com/enus/projects/liquid/

Obtaining the Software

How to kick the tires

T
he first place to visit is:
http://github.com/msr-quarc/Liquid
This site explains how to obtain LIQUi|>. The software may be used to model quantum systems and algorithms as described above in any of the three supported modes. In addition, the system can be extended in many ways, including adding user defined gates (unitary operators) and custom quantum error correcting codes.

Updates, news and discussions may also be found at the same location. News will also be published to the liquid-news email list; you can sign up for the list by sending an email to LISTSERV@lists.research.microsoft.com with a one-line body reading:

SUB Liquid-news FirstName LastName

replacing FirstName and LastName with your first and last names.
If you prefer to remain anonymous, you may instead send an email containing: SUB Liquid-news anonymous

Concepts and Data Types

The fundamental pieces of LIQUi|>

This user's manual will not attempt to teach either Quantum Mechanics or Quantum Computation (there are a plethora of sources available). However, we need to have some fundamental agreement on terms used in the sections that follow and a basic understanding of the actual definitions shared inside of the simulator. We will start at the bottom and work our way up.

Bit binary values used The basic data type is the Bit. Closely related to the classical bit, our inside the simulator. data type contains the usual states of one and zero but adds a new state Unknown. At most times, quantum systems do not admit to an exact value until we measure them. For this reason, a bit may return the value Unknown while it is inside of a quantum computation and has not been viewed externally as of yet.

Qubit quantum value that represents an entity that may be measured as a Bit.

Quantum values are represented as Qubits. The qubit is defined as a pair of complex vectors pointing to a spot on a unit sphere (see Figure 2). Traditionally, a qubit pointing directly up (positive on the σ_{z} axis) is denoted as the column vector $|0\rangle$ and the vector pointing down is known as $|1\rangle$. When measured, these become the Bits Zero and one respectively. Another way to think of this is directly with matrices where:

$$
|0\rangle=\left[\begin{array}{l}
1+0 i \\
0+0 i
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and }|1\rangle=\left[\begin{array}{l}
0+0 i \\
1+0 i
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Equation 1: State Definition
Any qubit may be viewed as a linear combination of these two vectors, so typically we will refer to the state of a single qubit as determined by two complex values \mathbf{a} and \mathbf{b} where:

$$
|\Psi\rangle=a|0\rangle+b|1\rangle=\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

Equation 2: Qubit State

Qubits will auto-normalize any states that are handed to them, so that $|a|^{2}+|b|^{2}=1$. Another way to view all of this is that a squared is the probability of measuring the qubit as zero and \mathbf{b} squared is the probability of measuring the qubit as one.

Figure 2: Bloch Sphere representation of a Qubit
One other useful way of interpreting the state of a qubit is by the angles of the vectors, in this case:

$$
\begin{gathered}
\mathbf{a}=\cos \left(\frac{\theta}{2}\right), \boldsymbol{b}=e^{i \phi} \sin \left(\frac{\theta}{2}\right) \\
(x, y, z)=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)
\end{gathered}
$$

Equation 3: Qubit as angles on the Bloch sphere

Ket Complete state of a quantum system

So far, we've seen what a single Qubit looks like, now we wish to combine them. In LIQUi \rangle, this is known as a Ket (reference to a column vector in Dirac notation) and will always be 2^{n} in length, where n is the number of qubits in the state. Of course, this number grows very rapidly with the number of qubits and the simulator does everything it can to keep from actually materializing the entire vector unless it needs to (e.g., when the qubits are fully entangled). This limits most of the simulation to ~ 30 qubits (1 billion states $=1$ billion double precision floating point complex numbers $=17 \mathrm{~GB}$) which is the most we can fit on a 32 GB machine and still perform simulations. The exception to this rule is the Stabilizer simulation engine (which will be discussed in its own chapter).

In LIQUi\| \rangle, every qubit must belong to a single Ket and any qubit can be queried to ask what ket it belongs to (hence, one only needs to pass qubits around).

Gate Represents an operator

To perform operations on kets we define Gates. A Gate may simply represent a unitary matrix that defines the operation (e.g., Hadamard, X, CNOT...), a non-unitary operation (e.g., Measurement and Reanimation) or a higher level concept (composite gates, binary controlled gates, extension gates (e.g., adjoint operator), Native and Label (UI support)). In addition to the actual operation, gates may define Names, Arity, Help and Rendering information for Circuit drawing). All of this will be described in detail in the section on user defined Gates.

Operations Represents the operation of a gate on a state

Gates are merely data structures. When they're wrapped in F\# functions, they become operators that can apply the Gate to a set of Qubits. Inside of LIQUi| \rangle, all Gates are exposed as Operations and user defined gates are wrapped in the same way. However, any F\# function may be viewed as an Operation, so this is not really a new data type, it's just the signature of any function that takes in Qubits and doesn't return a value (since the Ket is altered by the operation performed. Logically, you can view this as:

$$
\left|\Psi_{2}\right\rangle=U\left|\Psi_{1}\right\rangle
$$

Equation 4: Operations

Where U is the operation being performed on the state at time 1 resulting in a new state at time 2. Details will follow in the programming section, but if you wanted to apply a Hadamard gate on the first qubit in a list of qubits, it would look like this:

H qs

This is why the system is called "Language Integrated". Once we reach the level of operations, everything is completely embedded in the host language (in this case F\#). The other benefit of this type of integration is that depending on the ket that the qs parameter belongs to this one line will do any of three things:

1. Apply the Gate and update the Ket containing the Qubits
2. Return the Gate structure that H refers to (for use in higher level functions)
3. Build a Circuit that contains the Gate (for optimizations and re-writing)

Circuit Represents a list of operations on gates.

One of the goals of LIQUi|> is to provide post-processing of quantum algorithms for various reasons: drawing, parallelizing, substitution (some gates will not be available in target physical systems), optimization, export and re-execution to name but a few. The circuit data structure achieves this goal. Instead of running the Operations defining the quantum algorithm, the same calls can be used to build a circuit that can be manipulated by various tools.

The tools that operate on Circuits make up the majority of the simulation system and will be described in detail in later chapters.

Basic Operation

Getting up and running quickly

The two ways to interaction with the system are via a full compilation environment in Visual Studio linked to the LIQUi \rangle library (dll), or via an F\# script hosted by the LIQUi $\mid>$ application (exe). Both provide advantages. Compilation provides IntelliSense editing and a full debugging environment, while, scripting provides a quick and easy way to prototype and extend LIQUi|> while being able to quickly turn around simulations with varying parameters. There are also several test functions described in the rest of this manual that are built-in as well as provided in scripts (in the samples directory). All examples shown in this manual may be run in either way.

Execution Starting the simulator

Running LIQUi| \rangle simply entails starting the LIQUiD.exe file which without arguments (or with illegal arguments), the program will give command line help:

Liquid Usage: Liquid [/switch...] function Enclose multi-word arguments in double quotes		
Arguments (precede with / or -) :		
Switch	Default	Purpose
/1og	Liquid.log	Output log
/1a	Unset	Append to
/s	""'	Compile Load comp
Final arg is the function to call: function(pars,...)		

TESTS (all start with two underscores):

_Big()	Try to run large entanglement tests (16 through 33 qubits)
chem (m)	Solve Ground State for molecule m (e.g., H2O)
ChemFul1 (See QChem docs for all the arguments
_Correct()	Use 15 qubits+random circs to test teleport
Entangle1 (cnt)	Run n qubit entanglement circuit (for timing purposes)
Entangle2 (cnt)	Entangle1 with compiled and optimized circuits
Entangles()	Draw and run 100 instances of 16 qubit entanglement test
EntEnt()	Entanglement entropy test
EIGS()	Check eigenvalues using ARPACK
EPR()	Draw EPR circuit (.htm and .tex files)

Ferro(false, true)	Test ferro magnetic coupling with true=full, true=runonce
_JointCNOT()	Run CNOTs defined by Joint measurements
Kraus (cnt, AD, DP, v)	Teleport w/noise for iters,pAmpDamp,pDePolar,verbose"
Noise1(d,i,p)	d=\# of idle gates, i=iters, $p=p r o b O f N o i s e$
_NoiseAmp()	Amplitude damping (non-unitary) noise
QECC()	Test teleport with errors and Steane7 code (gen drawing)
_QFTbench()	Benchmark QFT used in Shor (func, circ,optimized)
QLSA()	Test of HHL linear equation solver
QuAM ()	Quantum Associative Memory
_QWalk (typ)	Walk tiny, tree,graph or RMat file with graph information
__Ramsey33()	Try to find a Ramsey $(3,3)$ solution
SG()	Test spin glass model
Shor (N, true)	Factor N using Shor's algo false=direct true=optimized
_show("str")	Test routine to echo str and then exit
Steane7()	Test basic error injection in Steane7 code
Teleport()	Draw and run original, circuit and grown versions
TSP (5)	Try to find a Traveling Salesman solution for 5 to 8 cities
__UserSample()	Stub for placing user code (in Main.fs)
	Example 1: Command Line Syntax

Any function in the system that has the [<LQD>] attribute may be entered on the command line with:

```
LIQUiD <function>(<arg>,...)
```

Arguments may be ints, floats, strings (with or without double quotes) and Booleans (true/false). All of the listed tests are defined in this way.

If there are spaces required in a string argument, place the entire string in double quotes ("). If you need to pass a comma, use " \backslash," since it will otherwise be used to separate arguments to the function. For example, to print out a string that contains commas and spaces, you could type:

```
> Liquid __show("This\, is a \"function cal1\"\, with commas")
0:0000.0/================ Logging to: Liquid.log opened =================
0:0000.0/This, is a "function cal1", with commas
0:0000.0/================ Logging to: Liquid.log closed =================
```

Example 2: Command line function execution
Output from LIQUi|〉 is typically generated by the show command which takes the same arguments as printfn (implied newline at the end of a line). This routine provides several benefits over and above the standard printf family:

1. Output is thread safe and guaranteed to output the complete line without being interrupted by output from other threads.
2. All output is duplicated in the log file (or may be sent to the log file without being sent to the console).
3. Each line is prepended with a thread ID to identify the source (0 : above) and elapsed time (in minutes) since the start of this run (0000.0).

To create a new executable, the easiest approach is to place your code in the provided main.fs file in the Liquid sub-directory and then build the entire solution (liquid.sln) with Visual Studio. This will create a new Liquid executable that has all of the capabilities of the original (argument parsing, scripts, ensemble execution...) as well as being able to call any of your functions from the command line that have the [<LQD>] attribute defined. The provided sample is very simple:
[<LQD>]
let _UserSample() =
show "This module is a good place to put compiled user code"
Example 3: UserSample - Extending the simulator
Any routine that has the attribute [<LQD>] is callable from the command line. User routines do not need to begin with underscores (these are only used to delineate built-in sample routines). A full description of how to compile code will be given in a later chapter. For now, we'll focus on extending the simulator via scripts ('liquid /s <script>.fsx').

The TESTS will be described in later sections of the manual (with sample code that generates them).

Creating a script

Scripts are F\# source code files (ending in .fsx) and are executed against the LIQUi|> library. We'll work through a complete example to show how one might write a script to perform a computation. Any function delimited with the [<LQD>] attribute (described later) may be called from the command line (__show used above has this attribute).

Script files are very flexible and several examples are provided in the samples directory. We'll work through the Entange1. fsx file now (details on the actual quantum calls will be filled in later). The first thing we'll need is a common header:

```
#if INTERACTIVE
#r @"..\bin\Liquid1.dll"
#else
namespace Microsoft.Research.Liquid // Tell the compiler our namespace
#endif
open System // Open any support libraries
open Microsoft.Research.Liquid // Get necessary Liquid libraries
open Util
// General utilities
open Operations // Basic gates and operations
```

Example 4: Script Header

Scripts may be run in several ways：
1．From within $\mathrm{LIQUi}\rangle$ via the／s command．This is covered by the namespace line （when running non－interactively）．
2．After loading and compiling the script（in the previous step），you are left with a new ．DLL that has your compiled code．You can efficiently execute this with the $/ 1$ command（load a dll）．
3．From fsi（the $\mathrm{F} \#$ interpreter）as a complete command（e．g．，fsi－exec Entangle1．fsx）．The file will load into the interpreter，execute and then exit（this is what the \＃if interactive is for）．
4．From fsi interactively（e．g．，fsi－－use：Entangle1．fsx）．The file will load and execute but the user is left inside the $\mathrm{F} \#$ interpreter where all of the loaded functions（as well as all of LIQUi｜〉 are available．
To use fsi，you will need to be in the samples directory and it will need to be in your path． A typical location to find it would be：
＂\％ProgramFiles（x86）\％\Microsoft SDKs\F\＃\4．0\Framework\v4．0\fsi．exe＂
All necessary System and LIQUi｜〉 modules are opened in the header．The header is followed by the code we wish to define and execute．Usually，we put this in a module called Script where we define any number of routines，flagging any that we wish to call from the command line with the［＜LQD＞］attribute：

```
[<LQD>]
let Entangle1(entSiz:int) =
    logOpen "Liquid.log" false
    let qt = QubitTimer()
    let ket = Ket(entSiz) // Start with a full sized state vector
    let _ = ket.Single()
    qt.Show "Created single state vector"
```


Example 5：User script module

Here we opened a log file and defined a timing function that will let us print out statistics as we run（the Qubittimer definition may be found in the script file）．We then make a state vector（ket）that will represent all of our qubits and force it to full size（ket．Single（）） converting the efficient（unentangled）representation of the state vector that LIQUi｜〉 normally uses to a fully realized state vector（ 2^{N} in size）．This is being used to show what are timings are like with fully entangled state vectors．If you comment out this line， everything will run much faster．

Now let＇s do the rest of the entanglement timing test：

```
let qs = ket.Qubits
H qs // Hadamard the first qubit
qt.Show "Did Hadamard"
```

$\overline{18}$

```
let q0 = qs.Head
for i in 1..qs.Length-1 do
    let q = qs.[i]
    CNOT[q0;q] // Entangle all the other qubits
    let str = sprintf " Did CNOT: %2d" i
    qt.Show(str,i,(i=qs.Length-1))
M >< qs // Measure all the qubits
qt.Show("Did Measure",qs.Length)
show ""
```

Example 6: Entanglement circuit
We first ask the state vector for the qubits that it represents (qs:Qubits). The qubits are always represented as an F \# list and all qubit operations (gates) always have a qubit list as their last argument. In addition, these functions never return a value because the qubits are maintained in their own state (the ket vector). Now we apply a Hadamard gate (\mathbf{H}) to the first qubit in the list. By convention, all gate operations will apply to the head of the list, using as many qubits as they need (e.g., CNOT will apply to the first two). This allows lists of any length to be used (useful for register operations) as well as allowing functions that operate on variable numbers of qubits (e.g., Quantum Fourier Transform (QFT)).

So far, we've called one quantum function (Hadamard) on the first qubit. Now we perform a loop to entangle (CNOT) the first qubit with the remaining qubits. This is an expensive operation and so we print out the timing statistics as we do each qubit. Finally, we measure all the qubits ($\mathrm{M}><\mathrm{qs}$) using a built-in LIQUi|〉 function, the "bowtie" that applies a gate (M) to all the qubits in a list.

We have several ways to run this sample. The easiest is to use the built-in version that's already in LIQUi|> (assuming that we're in the samples directory):

$0: 0000.2 /$	9.419	0.471	0.381	Did CNOT: 20
$0: 0000.2 /$	9.873	0.470	0.382 Did CNOT: 21	
$0: 0000.2 /$	0.700	0.032	0.431 Did Measure	
$0: 0000.2 /$				
$0: 0000.2 /===============$	Logging to: Liquid.log closed =================			
Example 7: Running Entangle1				

The numbers in front of the slash $(0: 0000.2 /)$ are output on every show command (superset of printfn). The number in front of the colon is a thread ID (useful when using multiple threads to output... also show is fully thread safe and won't create partial outputs). The number after the colon is the number of minutes (.tenths) since the app started.

In this case, we ran for .2 minutes or approximately 12 seconds total. If we wanted to run our script (Entangle1.fsx) from the samples directory, we would enter:

```
> ..\bin\Liquid /s Entang1e1.fsx Entangle1(22)
0:0000.0/================= Logging to: Liquid.1og opened
Microsoft (R) F# Compiler version 14.0.23020.0
Copyright (C) Microsoft Corporation. Al1 Rights Reserved.
0:0000.0/
0:0000.0/ Secs/Op 
0:0000.0/ 0.601 
\begin{tabular}{lllll}
\(0: 0000.0 /\) & 0.495 & 0.495 & 0.357 & Did CNOT: \\
\(0: 0000.1 /\) & 0.967 & 0.484 & 0.358 & Did CNOT:
\end{tabular}
\(0: 0000.1 / 1.433 \quad 0.478 \quad 0.358\) Did CNOT:
0:0000.2/ \(9.170 \quad 0.483 \quad 0.373\) Did CNOT: 19
0:0000.2/ \(9.645 \quad 0.482 \quad 0.374\) Did CNOT: 20
```



```
0:0000.2
0:0000.2/================ Logging to: Liquid.log closed
```

Example 8: Entangle1 running from a script
The main difference is that now we had to call the F\# Compiler to build a DLL that we loaded back into our image for execution. This is why it took slightly longer to run. However, now that we have the DLL, we can just do:

```
> ..\bin\Liquid /1 Entangle1.dl1 Entangle1(22)
```

Example 9: Entangle1 from a pre-built DLL
This will run the same without requiring a compilation step. One other option we have is to run using the F\# interpreter. Provided that fsi.exe is in our path, we can just do: fsi -exec Entangle1.fsx and the script will run using the "INTERACIVE" defaults that are in the file.

Another option is to take the circuit we've defined and compile the gates into a data structure called a circuit. This is demonstrated in the Entangle2 routine. Here, we define all the same quantum operations in a function:

```
let ops (qs:Qubits) =
```


SERIOUS CODING

H qs

let q0 = qs.Head
for i in 1..qs.Length-1 do CNOT !!(qs,0,i)
$M><q s$
// Measure all the qubits
Example 10: Single Entanglement circuit
We've made use of another built-in helper function (!!) which will pull out the indexed qubits from a list and create a new list. If we call ops directly, we will get the exact results we saw in Entangle1. However, we can turn this into a circuit data structure and then execute the data structure:

```
let circ = Circuit.Compile ops qs // Compile and run circuit
circ.Run qs
let circ2 = circ.GrowGates(ket) // Optimize and run circuit
circ2.Run qs
```

Example 11: Circuit Compilation and running
The circuit is actually slightly slower than the direction function calls. However, circuits are useful for many purposes. Since they are a data structure, the can be analyzed, modified, optimized, replaced, rendered as drawings, exported to other systems and simply run as if they were the original circuit. The second two lines in the example create an optimized version of the circuit. Here's what happens when we run all three variants:

0:0000.0/	secs/op	S/Qubit	Mem(GB)	Operation
0:0000.0/	11.474	11.474	0.419	Straight function calls
0:0000.2/	0.952	0.952	0.366	Compile cost
0:0000.4/	12.746	12.746	0.419	Compiled circuit run time
0:0000.5/	0.878	0.878	0.544	Optimization cost
0:0000.5/	2.330	2.330	0.362	Optimized circuit run time
		Example	2: Enta	gle1 with optimization run times

Here you can see that the compiled circuit is slightly slower, but the optimized version is ~ 5 times faster. $\mathrm{LIQUi}\rangle$ contains a large number of user accessible optimizations to make quantum simulations as efficient as possible.

To see the generated circuit, we could call the Dump command:

```
circ. Dump(showLogind)
```

Example 13: Dump of Teleport Circuit
The Dump command is defined throughout the system on most LIQUi\|> data types and may be nested. For this reason it takes up to two arguments: a dumping function (showLogInd) which writes the output to the \log in an indented manner and a starting indentation level (showInd will output to the \log and the console). The result for Entangle2(2) is:

```
Circuit dump (in Liquid.log):
SEQ
```

```
APPLY
    GATE H is a (Norma1)
        0.7071 0.7071
        0.7071 -0.7071
    WIRE(Id:0)
    WIRE(Id:1)
APPLY
    GATE CNOT is a Controlled NOT (Norma1)
        1 0 0 0
        0 1 0 0
        0 0 1
        0 0 1 0
    WIRE(Id:0)
    WIRE(Id:1)
APPLY
    GATE Meas is a Collapse state (Measure(,Joint=))
        1 0
        O 1
    WIRE(Id:0)
APPLY
    GATE Meas is a Collapse State (Measure(,Joint=))
        10
    WIRE(Id:1)
        Example 14: Dump of Entangle2(2) Circuit
```

Another manipulation would be to take the circuit and combine multiple gates together into larger unitary representations. This allows for more efficient simulation and is known in LIQUi\|> as "growing gates". If we dump out Entang1e2 (4), and then look at the result, we see that the Hadamard gate and all the CNOT gates have been reduced to a single Unitary:

```
APPLY
    GATE BOOECF3 is a BOOECF3 (Norma1)
        0.707100}0
        0 0.7071 0 0 0 0 0 0 0 0.7071 0 0 0 0 0 0
        0}0
        0
        0}0000000.7071 0 0 0 0 0 0 0 0 0 0.7071 0 0 0
```



```
        0
        0}0
        0}00000000000.7071 0 0 0 0 0 0 0 0-0.7071
        0}000000000.7071 0 0 0 0 0 0 0 -0.7071 0
        0
        0}00<0000.7071 00 0 0 0 0 0 0 0 0-0.7071 0 0 0
```



```
        0}0
        0}00.7071 0 0 0 0 0 0 0 -0.7071 0 0 0 0 0 0 0)
        0.7071 0 0 0 0 0 0 0 -0.7071 0 0 0 0 0 0 0
    WIRE(Id:0)
    WIRE(Id:1)
    WIRE(Id:2)
    WIRE(Id:3)
```

Example 15: Optimized Entanglement circuit
One other example shown in Entangle1.fsx is drawing the circuits we've created. This can be easily accomplished by calling the rendering package:

```
circ.Fold().RenderHT("Entangle2raw")
circ2.Fold().RenderHT("Entangle2opt")
```

Example 16: Rendering a circuit

RenderHT creates both HTML (SVG) and LaTeX (TikZ) drawings. The Fold call shifts everything to the left for nicer output. Here's what the created drawing looks like for Entangle2 (10) for the raw and optimized circuits:

Figure 3: Entangle2(10) circuit drawing (HTML and LaTeX)
An example of a very sophisticated built-in test is Shor's algorithm. It is called with two parameters: The number to be factored and whether to optimize (grow) the circuit. If we hand it an illegal number to factor, we're given a table of sample legal numbers to try:

Shor (1, true)										
0:0000.0/=============== Log										
0:0000.0/Legal numbers include:										
0:0000.0/ 4 bits:	15									
0:0000.0/ 5 bits:	21									
0:0000.0/ 6 bits:	63	57	55	51	45	39	35	33		
0:0000.0/ 7 bits:	123	119	117	115	111	105	99	95	93	91
0:0000.0/ 8 bits:	255	253	249	247	245	237	235	231	225	221
0:0000.0/ 9 bits:	511	507	505	501	497	495	493	489	485	483
0:0000.0/10 bits:	1023	1017	1015	1011	1007	1005	1003	1001	999	995
0:0000.0/11 bits:	2047	2045	2043	2041	2037	2035	2033	2031	2025	2023
0:0000.0/12 bits:	4095	4089	4087	4085	4083	4081	4077	4075	4071	4069
0:0000.0/13 bits:	8189	8187	8185	8183	8181	8177	8175	8173	8169	8165
0:0000.0/14 bits:	16383	16379	16377	16375	16373	16371	16367	16365	16359	16357
0:0000.0/15 bits:	32767	32765	32763	32759	32757	32755	32753	32751	32747	32745

Example 17: Sample numbers to factor
Factoring 55 yields:

Example 18: Factoring 65 with Shor's algorithm
Some items to note from this run:

1. The circuit had 30,540 basic gates that were reduced to 1,236 grown gates
2. The entire run took 8.75 seconds on a laptop. If we had run this without optimization (_shor($55, \mathrm{fa} 1 \mathrm{se}$)) it would have taken 1.6 minutes (11 x slower!)
3. We succeeded: $55=11 \times 5$ even though the random probability of success was only 31%.

Advanced Topics

Quantum Error Correction

Several advanced techniques are built into the simulator beyond simple gates and circuits. In the following chapters we will delve in to them in more detail. For now, let's just show how they may be accessed directly.

Let's use a circuit for teleport as our basic circuit (Figure 4). This circuit is the "hello world" of quantum computing and is fully described in Nielsen and Chuang. It will take a Src qubit in any state and teleport it to the Dest qubit (no matter how physically far apart they are). We can run this example directly from LIQUi|> as _-Teleport() or as the script in the samples directory as teleport.fsx. In either case, the example shows teleportation of several values via function calls, a compiled circuit and an optimized circuit). It also generates several renderings (in HTML/SVG and LaTeX/TikZ). The one in the figure shown here is teleport_CF.tex (CF = Circuit Folded).

Figure 4: Basic Teleport Circuit
Now, we'd like to add error correction to our operation. The first thing we're going to do is define two functions and their circuits that teleport the values $|0\rangle$ and $|1\rangle$ respectively (the complete example is in QECC. fsx):

```
// Teleport for Stabilizers and QECC
let tele0 (qs:Qubits) = teleport qs; M [qs.[2]]
let tele1 (qs:Qubits) = X qs; teleport qs; M [qs.[2]]
let k = Ket(3)
let tgtc0 = Circuit.Compile tele0 k.Qubits
let tgtc1 = Circuit.Compile tele1 k.Qubits
```

Example 19: Teleport circuit definitions

Quantum Error Correction Codes (or QECC) are defined as a user extensible class (see the Extensions chapter for detail). One of the built-in codes is called Steane7 which is a Caldebrank-Shor-Steane 7 qubit code (CSS Steane [[7,1,3]]). In this code, each logical qubit gets expanded into 7 physical qubits which can be used to detect errors and correct them.

Following tgtc0, we'll convert from a logical circuit into a physical circuit with:

```
1et s7 = Steane7(tgtC0)
let s7c = s7.Circuit
s7C.Fold().RenderHT("QECC_min",0,100.0,33.0)
s7C.Fold().RenderHT("QECC_a11",1,50.,20.)
```

Example 20: Mapping a Logical to a Physical circuit
The third line create a drawing of a high level view of the circuit (100% in on figure at a scale of 33%):

Figure 5: High level Teleport QECC circuit (LaTeX version)

The last line generates a low level view (Level $=1,50 \%$ of the circuit is in each figure, scale to 20% of the default size):

Figure 6: Low level Teleport QECC circuit (HTML version)

We started with 3 qubits and a small circuit... To do error correction we had to encode each of our 3 logical qubits into 7 physical qubits (21 qubits) +6 qubits for computation (Ancilla). 27 qubits is almost at our limit... so we can't go much beyond this before we run out of memory... this will lead us to the next simulator type - Stabilizers.

The circuit also got a lot more complicated because we had to provide:

1. State Preparation circuits that convert a logical qubit into 7 encoded physical qubits
2. New gates that replace the old ones, operating on 7 encoded qubits for every input/output logical qubit, returning an encoded result.
3. Syndrome measurement circuitry that determines which if any errors have occurred.
4. Error correction circuitry that fixes bad codes.

If we run this circuit, it will work and provide the correct answers... but there are two other things we can do with it that are more interesting. First, we'd like to inject errors. This can be done with:

```
1et errC,stats = s7.Inject 0.01
```

Example 21: Injecting errors for QECC
The probability of an error is specified 0.01 for any wire between gates and errors are injected (a randomly chosen X, Y or Z gate) throughout the circuit. This generates a new circuit (errc) as well as a list of statistics (stats) that tell us the number of x, Y and z gates
inserted into the circuit. Of course, this new circuit can be run and analyzed as well as manipulated further.

This output states that the new circuit contains an X error and a Y error. If we draw this circuit (at level 0) we can easily see where the errors were inserted. Here's the section that contains the errors:

Figure 7: Error Insertion
We can run the circuit directly at this point, but there's a better alternative. We can switch to a Stabilizer simulation engine (since the circuit only contains legal gates for that simulator (by design)) by issuing the command:

$$
\begin{aligned}
& \text { let stab } \quad=\text { Stabilizer(errc,ket) } \\
& \text { stab.Run() }
\end{aligned}
$$

Example 22: Running a Stabilizer simulation
This will run very quickly (it can handle 10s of thousands of qubits, but only a limited gate set). However, we now have the problem of interpreting the results. We need to convert physical qubits back to logical qubits. This can be done with statements like:

```
1et bit0,dist0 = s7.Log2Phys 0 |> s7.Decode
let bit1, dist1 \(=\) s7.Log2Phys \(1 \mid>\) s7.Decode
1et bit2,dist2 \(=\) s7.Log2Phys 2 |> s7.Decode
```

```
show "InjectedXYZ(%d,%d,%d) Fixes=%d (%4s,%4s,%4s)
    dist=(%d,%d,%d)%s"
    stats.[0] stats.[1] stats.[2]
    s7.NumFixed
    (bit0.ToString()) (bit1.ToString()) (bit2.ToString())
    dist0 dist1 dist2
    (if bit2 <> inp then " <====== BAD" else "")
```

Example 23: Obtaining QECC results

The first three statements pick out the physical qubits that represent a logical qubit (Log2Phys) and then converts them to the closest code value (Decode) returning the bit that best represents the code and the classical distance from the code. We then show for output the injected errors (stats) the number of times we needed to apply a fix in the quantum circuit (NumFixed), the actual bits we decoded and their distance from the correct code value. Typical output looks like this:

```
InjectedXYZ(0,1,1) Fixes=3 (Zero,Zero,Zero) dist=(0,0,0)
```

Example 24: Output of Stabilizer run
Here we injected a Y and a Z error, fixed three errors that propagated through the circuit, measured the three logical qubits as al zero and had no classical decoding errors $(0,0,0)$

The third simulation engine (Hamiltonian) will be described in its own chapter, however there is a sample script provided ($\mathrm{h} 2 . \mathrm{fsx}$) which will allow you to solve the ground state energy for an H_{2} molecule ($2^{\text {nd }}$ Quantized Hamiltonian) and Ferro. fsx which demonstrates various ferro-magnetic chain examples ($1^{\text {st }}$ Quantized Hamiltonian).

Chapter

Serious Coding

Compilation

Compiliation via Visual Studio provides the most immersive environment for creating sophisticated circuits and simulations. It also provides a full interactive debugging environment. It is no more difficult to use than scripting mode and a sample project is provided to help getting started. This approach to a data specific language stems from the Language INtegrated Query (LINQ) model used for many other application areas in Microsoft .Net languages. LIQUi \rangle is not a LINQ language but shares many of the same goals. This section will heavily rely on the F\# programming language. However, it will be presented in such a way that knowledge of any other high level language should be sufficient to understand the examples and to get started on your own quantum algorithm implementations.

Let's return to the teleport example from the previous chapter and re-create it directly in a Visual Studio project. If you open the provided solution (Liquid.s7n), you'll find the top level application project (Liquid):

```
amblution 'Liquid' (1 project)
    |a|## Liquid
    D -- References
        0 F# AssemblyInfo.fs
        \boxed{`] App.config}
        af# Main.fs
```

Figure 8: Liquid project
A sample file (Main.fs) is provided that you can edit yourself, or supplement with one or more files that will be called by Main. fs when you run LIQUi \rangle. Main. fs contains a module named usersample for this purpose; its contents are straight-forward:

```
module UserSample =
```

```
    open Util
    open Operations
    // Optional extras:
    //open Native // Support for Native Interop
    //open HamiltonianGates // Extra gates for doing Hamiltonian
simulations
    //open Tests // All the built-in tests
    [<LQD>]
    let __UserSample() =
        show "This module is a good place to put compiled user code"
```

Figure 9: Main.fs
The header looks just like the script (.fsx) examples and we have one routine marked with the [<LQD>] attribute which will be callable from the command line. If we compile and run the system, we get:

```
> liquid UserSample()
0:0000.0/=============== Logging to: Liquid.log opened
0:0000.0/This module is a good place to put compiled user code
0:0000.0/=============== Logging to: Liquid.log closed =================
```

Example 25: UserSample execution
One thing to note is that white-space indentation is significant in F\#, this allows you to define blocks without the need for curly braces (or equivalent). Normally, statements are separated by newlines, but you are allowed to use semi-colon as well (to put multiple statements on the same line).

Data Types

We're now going to re-visit the basic data types of the system that we first summarized in Chapter 2 and go into more detail. Let's return to the Teleport. fsx sample script to show some of the data types. We're going to move to fully interpreted mode by executing:

$$
>\text { fsi --use:Teleport.fsx }
$$

Example 26: Starting Teleport in fully interactive mode

This assumes that fsi.exe is in your PATH and your current directory is the Samples directory. After the Teleport example runs, we are left in the F\# interpreter where we now have a full LIQUi|> environment. A couple of basic notes about fsi are in order:

1. Comands are only executed after two semi-colons are entered (; ;)
2. \#quit; ; will exit the interpreter

The first step is to open the Script module, defined in Teleport.fsx, so your code can access the teleport function without prefixing it with "Script.":
> open Script;;
Kets and Qubits Now we'd like to create our own Ket vector of 3 Qubits:
States and the parts

```
> let ket = Ket(3);;
val ket : Ket =
    Ket of 3 qubits:
=== KetPart[ 0]: Qubits (High to Low): 2
    1
=== KetPart[ 1]: Qubits (High to Low): 1
    1
=== KetPart[ 2]: Qubits (High to Low): 0
    1
        0
```

Example 27: Creation of a Ket from fsi
Since fsi prints out the value of the last statement executed, we see that the ket is made up of 3 KetParts each containing 1 qubit of state $0:\binom{1}{0}$. KetParts represent entangled qubits, so since we started with 3 unentangled qubits, we have 3 ketParts. As we run circuits, qubits will be become more and more entangled and each individual ketpart will grow in size, while the number of them will decrease (there will be only one if all the Qubits are fully entangled). We can now set a variable to the list of qubits:

```
> let qs = ket.Qubits;;
val qs : Qubit list =
    [ 1|0>+ 0|1>; 1|0>+ 0|1>; 1|0>+ 0| 1>]
```

Example 28: Obtain Qubits from state
...and run teleport on them:

```
> teleport qs;;
val it : unit = ()
```

Example 29: Run teleport in fsi

Operations (gates and circuits) don't return a value, so all we see is unit (which means "nothing"). If however, we take a look at the individual qubits at this point, we see:

Example 30: Printing out Qubit values
The output shows that q0 got measured as a $|1\rangle$, q1 got measured as a $|0\rangle$ and the message was returned as a $|0\rangle$. Not very impressive, but it is what we started with.

Now let's do the same circuit, but start from a less trivial state:

```
1et ket = Ket(3)
let qs = ket.Qubits
let a = sqrt(0.25)
1et b = sqrt(0.75)
qs.[0].StateSet(a,0.0,b,0.0)
show "Input message: %s" (qs.[0].Tostring());;
teleport qs
show "Output message: %s [Measured: %d%d]"
    (qs.[2].ToString()) qs.[0].Bit.v qs.[1].Bit.v;;
```

Example 31: Teleport with an interesting initial state

This is the same as before, except we're starting from a new state (Stateset) and printing out the starting and ending states. The results are:

```
0:0014.1/Input message: 0.5|0>+ 0.866|1>
0:0014.2/Output message: 0.5|0>+ 0.866|1> [Measured: 10]
```

Example 32: Results from non-trivial teleport
Now we've sent a non-trivial message and it arrived in good shape. Also, we randomly measured $\mathbf{q 0}$ as a One which means we had to apply the controlled z gate to recover the input message.

Circuits Compiling Continuing our example, we'd like to compile our teleport functions to circuits function into a circuit for further manipulation (e.g., drawing, printing, parallelizing, optimizing...). To obtain a Circuit all we need is a state vector that defines our Qubits and the function we wish to compile:

```
> let circ = Circuit.Compile teleport qs;;
va1 circ : Circuit =
    Seq
        [Apply (GATE Src is a Label qubit: Src (String), Mat(2),[0]);
        Apply (GATE |0> is a Label qubit: |0> (String), Mat(2),[1]);
        Apply (GATE |0> is a Labe1 qubit: |0> (String), Mat(2), [2]);
        Apply (GATE H is a (Norma1), Mat(2), [1; 2]);
```

 33
    ```
Apply (GATE CNOT is a Controlled NOT (Normal), Mat(4), [1; 2]);
Apply (GATE CNOT is a Controlled NOT (Norma1), Mat(4), [0; 1; 2]);
Apply (GATE H is a (Norma1), Mat(2), [0; 1; 2]);
Apply (GATE Meas is a Collapse State (Measure), Mat(2), [1]);
Bitcon
        (GATE BitContol is a Bit control Qubit operator (BitControl(1)), Mat(0),
        [1; 2],<fun:op@183>
        Apply (GATE X is a Pauli x flip (Norma1), Mat(2), [2]));
Apply (GATE Meas is a Collapse State (Measure), Mat (2), [0]);
BitCon
    (GATE BitContol is a Bit control Qubit operator (BitControl(1)), Mat(0),
    [0; 2], <fun:op@183>,
    Apply (GATE z is a Pauli z flip (Norma1), Mat(2), [2]));
Apply (GATE Dest is a Label qubit: Dest (String), Mat(2), [2])]
```


Example 33: Circuit data structure

Here we see the data structure of the circuit we've created. Circuits may contain the following elements:

```
Seq: List of circuits to execute in sequential order
Par: List of circuits that may be executed in parallel
Apply: Application of a Gate to a set of wires (Qubits)
Ext: A Gate that extends the meaning of another Gate
bitcon: List of binary wires and a function on them that determine if a sub-
Circuit is applied (Binary Control)
wrap: Meta Gate that contains a circuit of other Gates
7. Empty: Denotes an empty Circuit
```

This is fairly simple structure for an abstract syntax tree (AST) but is both sophisticated enough to hold all of our desired circuits and is still simple enough for the user to parse and manipulate easily (more on this in the Circuit Manipulation chapter)

Bits Measured values Mentioned several times previously are items that have the Bit data type. This is not a standard binary value or replaceable by a Boolean. It specifically refers to a quantum value (Qubit) that has been measured, or a true unmeasured qubit if the value is unknown. Qubits maintain knowledge that they've been measured and can no longer be used in unitary operations. They may be brought "back to life" by non-unitary gates (described later in this chapter) and are also used for initializing unentangled qubits by referring directly to zero (initializes $|0\rangle$) or one (initializes $|1\rangle$).

Gates Fundamental Gates themselves have a specific structure that allows for reelements use in many ways. We'll go into all the options in the chapter on extending the simulator, but here's an example of taking our teleport function and turning into a first-class gate:

```
> let teleGate ( = =
        new Gate(
            Qubits = 3,
```


Example 34: Creating teleport as a new Gate
Now we can run this new gate like any other:

```
> ket.Reset 3 |> teleGate;;
val it : unit = ()
```

Example 35: Creating a simple gate
A few non-obvious things were done in this one line. Since the Ket vector we used last time was left in an unusable state (entangled, measured...) we performed a Reset on the state re-initializing it to a known number of qubits (3) in a known state (by default $|000\rangle$). The Reset returned a list of qubits, so we passed it to our new Gate for execution. Now that our teleport function is a Gate, we can define drawing instructions for it, it can be built into larger gates and it is manipulable inside of compiled circuits.

Built-in Gates

What's available?

Gates can range from a simple unitary matrix definition to large complex pieces of code that dynamically decide what to do at runtime. In this section we'll explore the various kinds of gates already available in the system and in the following chapter we'll describe how to define new ones.

The most straight-forward gates are those that represent standard unitary operations. These include:

- Hadamard (H) which takes an input qubit and rotates the basis: $\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$
- Pauli NOT gate (X) which performs a bit-flip: $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
- Pauli Y gate (Y): $\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]$
- Pauli phase flip gate (z): which changes the sign of $|1\rangle:\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
- Pauli identity gate (I): which does nothing: $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
- Phase gate (s) which flips the phase of a qubit: $\left[\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right]$
- $\frac{\pi}{8}$ phase gate (T): $\left[\begin{array}{cc}1 & 0 \\ 0 & e^{i 2 \pi / 8}\end{array}\right]$
- General rotation gate ($\mathrm{R} \quad \mathrm{k}$): $\left.: \begin{array}{cc}1 & 0 \\ 0 & e^{i 2 \pi / 2^{k}}\end{array}\right]$
- Eigenvalue measuring gate (U k). $\mathrm{K}=$ fraction of 2π
- Controlled-Not gate (CNOT): First qubit is control, second qubit is flipped if first qubit is a $|1\rangle:\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$
Swap two qubits (SwAP): $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
- Toffoli gate (CCNOT): Controlled-Controlled-Not. Operates on 3 qubits

In addition, several non-unitary and parameterized gates are provided:

- Measurement (M): Measures the first qubit in the list and collapses its state to one of $|0\rangle$ or $|1\rangle$ (bit values Zero or One) with probabilities based on the state before measurement.
- Reset (Reset Bit) : Take a measured Qubit and re-animate it as a Qubit with state of $|0\rangle$ or $|1\rangle$ based on Bit value provided.
- Restore (Restore): Take the first qubit in the list (which must be measured), get its Bit value and uses that to do a Reset.
- Label (Labe1 string) will place a label in the circuit on the head qubit at this point in time. There are several variants of this gate, The variants are of the form: Label<typ>, where <typ> is one of:
- U - float the label upward
- D - float the label downward
- L - float the label left (used at beginning of circuits)
- R - float the label right (used at end of circuits).
- C - float the label to the center of the wire
- CD - float the label to the center and down
- Raw - outputs raw LaTeX at this point
- Native (Native (Qubits->unit)): Apply the native function at this point in the circuit. This allows for native code to be applied at any desired point even after functions have been compiled to circuits. This is especially useful for saving intermediate values and debugging.
- Native Debug (NativeDbg (Qubits->unit)): Same as Native but doesn't show up in Circuit diagrams.
- Bit Control (BC gate). This gate reads the first qubit in the list (which must be measured). If it's a One then apply gate to the remaining qubits in the list.
- Arbitrary Bit Control (BCany gate). This is the same as the BC gate except that it takes a count of how many classical bits to use (measured qubits) and
a function that will receive the qubits and return a Boolean on whether or not to execute the quantum gate.
- Adjoint (Adj gate): Take the unitary matrix in gate and performs an adjoint operation on it before applying the matrix to the qubit list. This only works if the provided gate is defined by a unitary matrix (of course).
- Control gate (Cgate gate). This may be thought of as the quantum equivalent of $B C$. Take the matrix in gate and expand it to include a control line. Then apply the resulting gate to the qubit list. For example: Cgate x is the same thing as CNOT.
- Control Control gate (ccgate gate). Take the matrix in gate and expand it to include two control lines. Then apply the resulting gate to the qubit list. For example: CCgate x is the same thing as CCNOT.
- Transverse Gate (Transverse). Take any other gate and convert it into its transverse equivalent (for QECC).
- Transverse Binary Control (T_BC). Convert a binary control gate into its transverse equivalent (for QECC).

There are also sets of specialized gates. The largest set is for Hamiltonian operations (these are in the model HamiltonianGates):

- Couple two σ_{z} operations (zz).
- Rotated Pauli (Rpauli). Takes a Pauli gate ($\mathrm{X}, \mathrm{y}, \mathrm{z}$) and rotates it to an arbitrary angle (R_{x}, R_{y}, R_{z}).
- Rotate a Pauli Z and ZZ (Zr, zzr). This is just a short-hand version.
- Rotate phase by arbitrary angle (Ttheta).
- Rotate global phase by an arbitrary angle (Gtheta).
- Flip the current qubit basis from Z to Y or back (Ybasis, Ybasisadj).
- Rotate around Z, Y or X in the natural units (Rz, Ry, Rx).
- Controlled versions of above (CRz, Cry, CRx, CTtheta, CGtheta).
- Use CNOTs to entangle/unentangle across any number of qubits (Entangle, UnEntangle). This is for implementing Jordan-Wigner strings.

There are also a few specialized gates for Joint Measurement operations (used in braiding circuits for Majorana Fermions). See the sample in Joint.fsx for details:

- Joint measure in the Z basis (JMz). This gate take a symbol name to store the result in (since it isn't local to any one qubit) and a list of qubits to perform the joint measurement on.
- Joint measure in the X basis (JMx).
- Joint measure in multiple basis (JM). This op takes a string of basis values "xyz" that match up 1 -to- 1 with the qubit list you provide.
- Parity Control (PC). This gate takes the results of previous joint measurements and decides whether to apply a gate (like BC). It takes a label (to put on drawings to show the formula used), a function to compute the desired Boolean operation in addition to the gate to control and the qubit list. If we wanted to check if two previous measurements were not equal, and if so, apply an X gate, we could do (from Joint.fsx):

```
PC "p1<>p3" (fun qs -> k.Symbol "p1" <> k.Symbol "p3") X [t]
```


Gate and Qubit Operators

Shortcuts that help

Some manipulations of Gates and Qubits are done on a regular basis and therefore LIQUi|> provides some short-hand F\# operators to make these various function easier:
>< Apply operator to qubits

The map operator (><) takes a Gate function and a list of Qubits and applies the Gate to each qubit in turn. For example: $\mathrm{H}><$ qs will perform a Hadamard operation on each of the qubits in qs
>!< Apply operator to The argument map operator (>! < takes a Gate function and qubits with argument a tuple of arguments and qubits and applies the Gate (with the provided argument) to each qubit in turn. For example, the following two syntaxes are available:

```
Labe1 >!< (["q0";"q1";"q2"],qs)
Labe1 >!< ("|0>",qs)
```

Example 36: Map with arguments operator
The first will place a label on each of three qubits. The second will put the same label on all the qubits in the list.
!! Build a qubit list
The build operator (!!) will take various arguments and turn them into a legal Qubit list. Here are some examples:

| ! ! k | // when k is a Ket |
| :---: | :---: |
| ! ! ${ }^{\text {d }}$ | // when q is a Qubit |
| ! ! (q, q) | // Two qubits |
| $!!(q, q, q)$ | // Three qubits |
| !!qs | // Qubit list |
| ! ! (qs,qs) | // Two qubit 1ists |
| !! (qs,qs,qs) | // Three qubit 1ists |
| !! (qs list) | // List of qubit lists |
| | 38 |

```
!!(qs,q)
!!(q,qs)
!i(qs,i)
!!(qs,i,j)
!!(qs,i,j,k)
!!(qs,is)
!!(qs,i)
!i(qs,i,j)
!!(qs,i,j,k)
!!(qs,idxs)
```

// Qubit list and a qubit
// Qubit and a qubit list
// Take qubit i from qubit list
// Take qubits i,j from qubit list
// Take qubits i,j,k from qubit list
// Take qubits in is list from qubit list
// Pull out qubit i and turn into a list
// Make a list from qubits i and j
// Make a list from qubits i, j and k
// Make a list from qubits with idxs list

Example 37: Build a Qubit list operator
! < Get Gate
The extract gate operator ($!<$) will call a Gate function, ask it for the underlying Gate and return the data structure. This is used when defining parent gates in custom gate functions and during gate mapping (e.g., implementing Quantum Error Correction Codes).

Chapter

Extending the Simulator

IQUi|> has been architected to allow extensions in several different directions. At the bottom Gates may be defined (or re-defined), Circuits may be re-written, modules may be added including new simulation, rendering, optimization and export engines. We'll start with gate definitions and work our way up.

Custom Gates

What can I create?

C
ustom Gates are defined by the user in the identical way that built-in gates were defined by the system. Indeed, no gates are actually "built-in", they are just defined as a convenience to the user. We will walk through several of the built-in gates as an example of how to define your own gates.

A distinction should be made between the Gate data structure and gate functions (also called Operations). The latter is an $\mathrm{F} \#$ function that will carry out the definition of the Gate that it contains. The reason for this separation is that it allows us to call Operations in multiple modes (Run, Circuit and Gate) that perform different desired behaviors. All the Gates we define will always be wrapped in Operations so that they may be used in any mode desired. The Gate structure itself looks like this:

```
type Gate( ?Name:string,
    ?Qubits:int,
    ?Mat:CSMat,
    ?Draw:string,
    ?Help:string,
    ?op:GateOp,
    ?Parent:Gate option)
```

Example 38: Gate constructor

Many fields are optional depending on the type of gate being implemented. Here is what each one means:

- Name: Name of the gate (used in output functions for printing and drawing). Typically, this is always specified
- Qubits: Arity of the gate. This must be specified if there is no associated unitary matrix (i.e., if it can't be determined from the other parameters).
- Mat: unitary matrix. Not needed if the type of op doesn't require it.
- Draw: Drawing instructions for circuits (discussed in detail later)
- Help: Information for a user of this Gate to understand it
- Parent: What gate we're based on (if any)
- Op: Gateop for this gate (default s to Norma1) and must be one of:
- Norma1: Standard unitary operator
- Measure: Measurement on first qubit
- Reset(Bit): Re-create a Qubit from a Bit. If the provided bit $=$ unknown then use the current digital value of the qubit as the value to re-constitute.
- String: Used by Labe1 gates (just for drawing)
- Modify(n): Create a new gate with an additional n qubits at the front. Used for Adjoint and Control gates. Requires Parent field to be specified
- BCOp(n,op): Binary control on n qubits (at front of list). Hand op the qubits and let it classically decide if we should execute the parent gate on the remaining qubits (if it returns true).
- Wrapop (op): Wrap other gates into one meta-gate
- wrapHam(pqrs,op): Represents a second quantized Hamiltonian term with PQRS spin orbitals.

We'll now walk through each of the Gateop types and show how they are defined.

Normal Basic kind of Gate requires more than one Qubit) and then give a few examples of parameterized gates. The Qcircuit like drawing instructions will be explained in the section on Rendering.

The full code for CNOT follows:

```
let CNOT (qs:Qubits) =
    1et gate =
        Gate.Build("CNOT",fun () ->
            new Gate(
                Name = "CNOT",
                Help = "Controlled NOT",
                Mat = (CSMat(4,[(0,0,1.,0.); (1,1,1.,0.);
                Draw = "\\\ctr1{#1}\1.,0.);(3,2,1.,0.)])),
                Draw = "\\\ctr1{#1}\\go[#1]\\targ"
    gate.Run qs
```

 41
 Example 39: CNOT Gate implementation
At the inside of the function is the actual Gate structure (new Gate(...)). You'll notice that it has the fields we already described. We need to explain the Mat entry further (Draw will await a separate section on rendering circuits). Matrices in LIQUi|> are defined to be Square, Complex and Sparse (hence csmat). The constructor used is fairly straight forward. The first argument is the size of the matrix $\mathrm{N}\left(N=2^{k}\right.$ where k is the number of qubits), defining an NxN matrix. The second argument is a list of non-zero entries in the form: (row, col, real, imaginary).
In this case, we've defined CNOT as: $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$
Next out, is a call to Gate.build(...). This call is optional, but should be used whenever possible. A global cache of gates is maintained for efficient memory usage and quick initialization. By calling Gate.Build(...) with a unique key (usually the name of the gate with any unique parameters), the gate creation function is only called once and from then on is looked up in a dictionary. The function cannot be used if the gate created could be different on each instantiation (for instance, changing binary values). It is most useful for fixed unitary matrices.

The outer most section of the function calls the gate we just created with gate. Run qs. This allows the runtime to choose the mode to call the gate in (Run, Circuit or Gate) dynamically and completes the definition of the gate function (or Operation).

Measure Measurement The measure operation takes two parameters (name, joint). If of a qubit joint is the empty string, then this is a normal (destructive measurement). Otherwise, name is where we will put the result in the state symbol table and joint is the string of basis measurements ("xyz") that we wish to jointly perform.

The Draw parameter typically uses a built-in shortcut to generate the picture of a meter. The actual code used for measure is:

```
1et M (qs:Qubits) =
    7et gate =
        Gate.Build('M",fun () ->
            new Gate(
                Name = "Meas",
                He1p = "Col1apse State",
                        Mat = CSMat(2),
                        Draw = "\\meter",
                        Op = Measure("","")
        ))
    gate.Run qs
```


Example 40: Measurement Gate definition

Reset Turn a bit into a All variations of this operation are covered by the Reset qubit and the Restore Gate functions. However, it might be instructive to show the Reset definition since it's our first example of a parameterized gate function:

```
let Reset (b:Bit) (qs:Qubits) =
    let gate (b:Bit) =
        let key = "Reset" + b.v.ToString()
        Gate.Build(key,fun () ->
            new Gate(
                Name = key,
                    Help = "Re-create qubits with " + key,
                    Mat = CSMat(2),
                    Draw = "\\gate{\\ket{"+b.v.ToString()+"}}",
                    Op = Reset b
        ))
    (gate b).Run qs
```


Example 41: Reset Gate definition

Note that we now have a Bit value (b) that has to be passed down through the definition (along with the input qubits (qs) of course). You can also see that the key, Name, He1p and Draw fields are all parameterized by the bit value.

Restore is simpler, because it requires no parameters:

```
1et Restore (qs:Qubits) =
    1et gate =
        Gate.Build("Restore",fun () ->
            new Gate(
                Name = "Restore",
                    Help = "Restore qubit to measured value",
                Mat = CSMat(2),
                    Draw = "\\gate{\\ket{M}}",
                    Op = GateOp.Reset Unknown
        ))
    gate.Run qs
```


Example 42: Restore Gate definition

Modify change a parent Modify is worth a couple of examples. In the first, we just want gate to change the definition of a parent gate. In this example, we'll take the adjoint of the gate we're given as a parent:

```
1et Adj (f:Qubits->unit) (qs:Qubits) =
    let gate (f:Qubits->unit) (qs:Qubits) =
        1et parent = !< f qs
        let pMat = parent.Mat
        if pMat.Length = 0 then
            failwithf "Adj can't control parent %s, no matrix "
                                    parent.Name
```

```
    Gate.Build("Adj_" + parent.Name,fun () ->
        new Gate(
        Name = sprintf "%s'" parent.Name,
        Help = sprintf "Adjoint of %s" parent.Help,
        Draw = DrwAST.Morph(parent.Draw,
            fun (str:string) -> str + "^\\dagger"),
        op = Modify 0,
        Mat = pmat.Adj(),
        Parent = Some parent
        ))
(gate f qs).Run qs
```

Example 43: Adjoint Gate defintion
There are a few new items to note. The parameter to this gate function is another gate function (f). From the gate function (Operation), we need to discover the actual Gate. This is done with the extract gate operator (!<). Everything else is pretty straight forward (including creating unique keys and names). The new matrix is created from the adjoint of the parent's matrix (pmat.Adj()). We also need to store away the parent we discovered in the Parent field (some parent). For this gate, our operation is Modify 0 which means that we are not adding any additional wires to the parent, just transforming it.

A Control Gate is an example where we want to operate on more qubits than the Parent needs. This is a more complicated gate, but still fairly straight forward. The main difference is the need to actually build an entirely new matrix based on the parent matrix. To make this easy, LIQUi> adds a function to build it for you:

```
1et Cgate (f:Qubits->unit) (qs:Qubits)=
    let gate (f:Qubits->unit) (qs:Qubits) =
        1et parent =!< f qs
        parent.AddControl()
    (gate f qs).Run qs
```

Example 44: Control Gate definition
AddControl creates a matrix twice the dimension of the parent matrix, fills in the diagonal of the new entries with 1 s and copies the values from the old matrix into the lower right of the new one. This gives us a generalized gate that can take any unitary gate of any arity and create a controlled version (very powerful). There is also a version (cgatenc) that requests that the gate not be cached (useful for Hamiltonians with many different angles).

BCOp Bit Controlled The bit controlled gate is a special case because classical values operation need to be manipulated at simulation-time and then quantum operations need to be performed based on these bits. There are two main uses for this Gateop. The first is to perform classical functions within a circuit (possibly for debugging or saving of information)... but without the application of a quantum gate as a result. An example of this is the Native gate function:

```
let Native (f:Qubits->unit) (qs:Qubits) =
    let gate (f:Qubits->unit) =
        new Gate(
        \(\begin{array}{ll}\text { Name } & =\text { "Native", } \\ \text { Help } & =\text { "Run native code in the circuit", }\end{array}\)
        \(\begin{array}{ll}\text { Mat } & =\text { CSMat (2) },\end{array}\)
        Draw = "\\gate\{Native\}",
        Op \(\quad=\operatorname{BCOp}(0\),(fun (qs:Qubits) -> f qs;true))
        )
    (gate f).Run qs
```


Example 45: Native Gate definition

The looks pretty much like the previous gates with a couple of exceptions:

1. The operator says that it needs 0 binary bits and just calls the provided function (f) with all of the qubits available (qs). This allows classical code to look at the Ket, do operations outside of the quantum simulation (like print out status) and then return.
2. The matrix is specified as CSMat (2) which is a dummy because it never gets used.
3. The Parent entry is never specified. This guarantees that we won't call another gate.

The other main use is as an actual binary controlled gate:

```
let BC (f:Qubits->unit) (qs:Qubits) =
    1et gate (f:Qubits->unit) (qs:Qubits) =
        let parent = !< f qs
        1et op (qs:Qubits) = qs.Head.Bit = One
        new Gate( = "BitContol"
            Name = "BitContol", 
            Qubits = 1 + parent.Arity,
            Draw = "\\control\\cwx[#1]",
            Op = BCOp(1,op),
            Parent = Some parent
        )
    (gate f qs).Run qs
```

Example 46: Binary Control Gate definition
Here we actually eat up one qubit ($\operatorname{BCOp}(1, o p)$) and the op just looks to see if the first qubit is a one (qs.Head.Bit=One). Now the parent gate is called if this function returns true. You'll also note that neither of these gates use Gate. Build (...). The reason is that they aren't cacheable because they can do unpredictable things at run time (classical operations that are not under the control of the simulation system).

WrapOp create a metagate into higher (more abstract) ones. There are two reasons to do this. The first is to create a "macro" that allows a single gate to be called (logically)
from many places in your circuit. The second is to provide an abstraction for circuit drawing. One of the options on drawing is how far to "unwrap" the circuit. This allows for high level views of your circuit without seeing the possibly thousands of gates underneath.

Here's an example of the adjoint of a controlled rotation gate as a wrapop Gate:

```
let CRAdj (k:int) (qs:Qubits) =
    let gate (k:int) (qs:Qubits) =
        Gate.Build("CR'_" + k.ToString() ,fun () ->
            new Gate(
                Qubits = qs.Length,
                Name = "CR'",
                Help = "Controled R' gate",
                Draw = sprint "\\ctrl{#1}\\go[#1]\\gate{R%d^\\dagger}"
                    k,
                    Op = WrapOp (fun (qs:Qubits) ->
                                    Cgate (Adj (R k)) qs)
        ))
    (gate k qs).Run qs
```


Example 47: Wrap Gate Implementation

The operations done (wrapop) could be as complicated as desired with hundreds of gates involved. The only restriction is that the whole gate may only operate on the qubits that it's provided (of course).

Rendering

Drawing pretty circuits

G
ates contain a field that directs how a circuit containing the gate will represent it (Draw). In this section we'll give a short overview of the rendering instructions that are available to the user when building custom gates.

The Draw field itself is just a list of drawing instructions to use patterned after Qcircuit (see http://www.cquic.org/Qcircuit/ for more information) which is a LaTeX wrapper for the XY-pic package. The current implementation is a complete re-write based on the TikZ drawing package but retains some of the "feel" of Qcircuit.

The file LiquidTikz.tex in the samples directory contains the full quantum drawing package and should be placed at c:\Liquid\LiquidTikz.tex so that it can be found by the .tex files generated from LIQUi|>. If you'd like to see the capabilities of the drawing package, go into the LiquidTikz.tex file and change the line:
\iffalse \% Sample Drawings
to \iftrue and compile. The result (provided in samples as Liquidtikz.pdf) shows several circuit drawings. Here's one of the examples showing a QECC circuit with bending vertical wires to show where they go:

Figure 10: Sample drawing from LiquidTikX.tex

When called in a gate, the drawing cursor is placed on the wire representing the first qubit in the list at the current time step in the circuit. Each of the legal elements for this list will be described in detail. The output of a drawing request is either an SVG file (if the file extension is .htm) a LaTeX file (if the file extension is .tex) or both (when calling the RenderHT function) containing the drawing instructions. SVG files can be opened with a number of applications (including your Internet Browser) and TeX files may be used in LaTeX documents (provided you include the Liquidtikz.tex file).

gate draw a gate on the circuit

The \gate\{string\} command takes a string and draws it on legal TeX text string and may contain TeX math symbols (e.g., ^\dagger which becomes \dagger as a superscript) and commands (e.g., $\backslash \operatorname{ket}\{0\}$ which becomes $|0\rangle$

Istick draw text on the The $\backslash 1$ stick \{string\} command draws the string on the
circuit
circuit at the left of the current column. Variations include: circuit at the left of the current column. Variations include:
rstick, ustick, dstick, cstick, cdstick and raw. See the description of Labe1 in Built-in Gates
multigate draw a The \multigate\{\#1\}\{string\} command draws a gate that multiline gate spans multiple wires. The numeric argument should be specified as the wire number where the bottom of the gate resides. For example if the gate is three wires long, then referencing $\backslash m u l$ tigate $\{\# 2\}\left\{U _a\right\}$ will create a gate 3 wires high (wires 0,1 and 2) with U_{a} as its name.
control draw a circle The \control command draws a closed circle on the circuit. For an open circle, use \controlo.
$\mathbf{q w x}$ draw a vertical line The \qwx[\#1] command draws a vertical line to the numbered wire (always specify the \#). For a classical (double) wire, use $\backslash \mathrm{cwx}[\# 1]$.LIQUi \rangle also provides a $\backslash \mathrm{dwx}$ [\#1] to draw dotted lines. In general, there is no need to draw horizontal lines (\qw, \cw or \dw) since they will be inserted automatically.

ctrl draw a circle and a The $\backslash \operatorname{ctr} 1\{\# 1\}$ command draws a closed circle on the vertical line circuit and then a vertical line to the numbered wire (always specify the \#). For an open circle, use \ctrlo.

$\boldsymbol{\operatorname { t a r g }}$ draw a mod 2 The $\backslash \operatorname{targ}$ command puts a \bigoplus on the current wire (target of addition symbol on a wire a ctrl).
qswap draw cross on a The \qswap command puts an X on the current wire (target wire of a quantum swap).
meter draw an meter The \meter command puts a measurement meter on the current wire and converts the wire to digital (double line).
go positions the drawing The $\backslash \mathrm{go}[\# 1]$ command will move the drawing cursor to a cursor specific wire in the list of qubits the gate operates on (starting with 0). Subsequent commands will refer to that wire until another \backslash go command is given. For example, to go to the second wire of a CNOT, you would specify: \go[\#1]. Before the first drawing command, an implicit \go[\#0] is performed.

Here's what the drawing instructions for CNOT look like:
Draw = "
<ctr1\{\#1\}
go[\#1]
targ"
Example 48: CNOT Render instructions
Implicitly move to wire 0 , draw a filled circle and a vertical line from wire 0 to wire 1. Then move to wire 1 and draw a \oplus.

Several rendering helper functions have also been defined to make common operations easy and efficient:

Morph re-write The DrawASt.Morph(string, strFunc) command takes two instructions arguments: a string of drawing instructions (typically from a parent Gate) and a function that maps one string into another. In the Adj Gate shown above changes all of the string parameters to commands in the parent gate with the same name followed by a superscripted dagger (\dagger).

Draw instructions wrap gates are handled a little differently. If we're at the lowest level that we're going to draw, then the drawing instructions for this gate are executed. If we are going to go further (inside the wrapper), then we ignore these drawing instructions and instead proceed to the drawing instructions of the inner gates. This allows us to render circuits at various levels of abstraction.

Here's an example of a set of drawing instructions for the Hpq Hamiltonian gate:

$$
\text { Draw }=\text { "\\ctr1\{\#1\}\\go[\#1]\\mu1tgate\{\#2\}\{Hpq\}", }
$$

Example 49: Rendering wrap gates

Here we'll draw a closed circle on the wire 0 and then a vertical line to wire 1 (control from a phase estimation qubit). Then we move to wire 1 and draw a multiple qubit gate around qubits \#1 to \#2. Note that in an actual circuit, these qubits could be far apart and the box might be many qubits high.

Asking for a high level view, here's what the circuit for H_{2} looks like (which utilizes some of the Hp_ variants in HamiltonianGates:

Figure 11: Rendering of a complex circuit (high level)

Here's the detailed rendering:

Figure 12: Rendering of a complex circuit (low level)

Circuit Manipulation

Optimiration

C
ircuit mode has been touched on a few times earlier in this document. We will now go over the various options in detail and then move into optimizations and alternative simulation engines that can be used with circuits.

Once an algorithm has been defined as a function, it may be converted to a Circuit by simply asking for a circuit compilation:

```
1et ket \(=\operatorname{ket}(3)\)
let circ \(=\) Circuit. Compile teleport ket. Qubits
Example 50: Compiling a Circuit
```

A set of Qubits from a ket vector must be provided so the circuit has context of what qubits are needed and how they are used by the Gate functions (Operations). In this case we've taken the teleport function and converted it to a circuit data structure. Elements of the Circuit data type include:

Seq Sequence of Circuits Seq (Circuit list) represents an ordered list of circuits to execute one after the other.

Par Parallel set of Circuits Par (Circuit list) represents a parallel set of circuits to execute at the same time. Optimizers generate this from seq when there are no overlapping qubits touched between multiple operations (e.g., the Fold() command).

Apply do a standard gate operation actual Qubits before the Gate is called.

Ext extends the function
of a Gate

Ext(Gate, wires, Circuit) applies a new version of a Gate that was derived from another gate (the sub-circuit in the argument list). A typical example would be taking the adjoint of another gate.

BitCon represents binary control gates

Circuit.
Wrap meta gate that Wrap(Gate, wires, Circuit) allows meta-gates to be wraps a list of other gates

BitCon(Gate, Wires, Func, Circuit) runs the Func (that must return a Boolean value). If the value is true, then call the subrepresented. This is especially useful for drawing circuits with varying levels of resolution. The sub-Circuit is usually a seq or Par circuit representing multiple Gates.

Empty dummy Circuit Empty allows for a representation of a Circuit that has no elements. It is usually a place holder that is removed when an actual circuit starts being built. It may be thought of as a noop.

Once we have a circuit several useful function are immediately available:

1. Dump: Dump allows a circuit to be printed to the console and/or the log. This is useful for both debugging and export to other simulation environments (see Example 13: Dump of Teleport Circuit).
2. FindIDs (detail): Given a detail level ($0=$ least), get a set of qubit ids that are used by the circuit and total time steps necessary to execute the circuit.
3. Render(file:string,?typ:string,?detail:int,?split:float, ?scale:float): Draw a diagram for the Circuit into a file.
4. Renderht(file:string,?detail:int,?split:float,?scale:float): Call render for both svg and tikz output files (leave off extension).
5. Fold(?aggressive): Convert Seq entries to Par entries where possible. This has the effect of sliding the circuit elements to the left (useful to call before Render()). If you set aggressive=true then the entire circuit is flattened before parallelizing. This won't be as pretty for drawing, but will give much better estimates of the actually depth count of the circuit.
6. GateCount(?doPara11e1): How many low level gates are there in the Circuit? If you want to overlay parallel circuits (dopara11e1), you should call Fold(true) first to get the most accurate count.
7. Run(Qubits): Run the Circuit in the same way the original function (that it was compiled from) would have run. This becomes powerful after optimizations to the Circuit have been performed, or Gates have been substituted based on architectural or error considerations.
8. Grow(...): The most sophisticated of the built-in Circuit functions. We will describe this function in detail next.

The family of circuit functions that perform optimizations are all wrapped together under the Grow(Ket,GrowPars) function. This operation will take a

Circuit and re-write it for optimal execution. On a large circuit (hundreds of thousands of gates), reductions in gate count of 100:1 are easily achievable (with massive execution speed-ups). The ket argument is only used for bookkeeping.

The Growpars argument is usually created in one of two modes:

1. Gates: GrowPars(?maxwires,?verbose,?allowDense) will create an optimized circuit from any other Circuit:
a. maxwires: How many wires can be used in a single grown gate, the default of 11 is a fairly optimal value.
b. verbose: Whether to report on what was done.
c. allowDense: In most cases we don't want big dense matrices, but for some simulations we may want to force this to happen.
2. Single

Unitary: GrowPars(half,?eCnt,?ocnt,?skip,?diff,?verbose,?parity, ?redund,?colaesce) will generate highly optimized circuits for Hamiltonian circuits (only):
a. half: For the qubits representing electrons, are spin-up the first half of the qubits vs. interleaved (up,down).
b. ecnt: How many electrons are there?
c. ocnt: How many orbitals are there?
d. skip: How many of the initial qubits are not electrons (ancilla, e.g., phase estimation qubits).
e. diff: What is the required difference between up and down spin counts ($[=$ no restriction, otherwise a list of allowable differences).
f. verbose: Report on what was done?
g. parity: Force row and column parity to match? This forces conservation of angular momentum
h. redund: Force removal of redundant gates (like an X following an X or two sequential CNOTs on the same wires).
i. coalesce: Force coalescing of small angles across Trotterization steps. This is a tuple of (size, keep) where size is the limit of small angles and keep is whether to keep them.

Each of the restrictions specified in GrowPars affects how optimal the final output is. In the case of Hamiltonian circuits, this can a massively complex circuit and turn it into one that is easily simulable.

QECC: Quantum Error Correction Codes

Adding faults and fault tolerance

N
ow that we have Circuits to manipulate, one the most useful things we can do is apply a transformation to the circuit that makes it fault-tolerant, add faults (via injected Gates) and then test the result (to see how fault tolerant the circuit really is). The problem we need to solve is allowing the user to create their own fault tolerant circuitry (extending LIQUi| \rangle) in such a way that all the other tools in the system are still available. That is what the QECC class is all about.

We refer the user to other sources on Quantum Error Correction Codes and their theory, but suffice it to say that there is a basic strategy we will follow for all implemented QECC inside of LIQUi|〉:

1. A circuit to test will need to be re-written where each original Qubit (called a logical qubit) will need to be replaced with a set of qubits (called the physical qubits).
2. These physical qubits will need to be "prepared" in a logical $|0\rangle$ state (given the code under investigation) via a provided Gate.
3. Each of the original Gates will need to be replaced with Gates that operate on a set of physical qubits which represent the logical qubits.
4. The QECC of a logical qubit will need to be measured, analyzed and fixed with a circuit known as the "syndrome" Gate.
5. After measurement, the QECC will need to be decoded from a set of physical qubits back to a logical qubit by doing classical error correction. This will be known as the Decode function.
6. Errors can be introduced in many ways. LIQUi|> provides a simple model of a de-polarizing channel that will insert X, Y or Z gates on any physical qubit with a user provided probability.

Besides the new class, we also provide two new gates that are useful in a number of codes:

Transverse
implements a default QECC version of another gate

The Transverse gate will take an input gate and create a new version (via the Wrap operation) that performs the same operations on each of the physical qubits that make up a logical qubit. For example, Transverse $7 \times$ will create a version of the x gate on 7 physical qubits.

T_BC Transverse version The T_BC gate is a pre-built version of the BC gate that allows of Binary Control a logical binary control of other logical qubits (using transverse encoding). The reason that this gate is special (and can't be implemented with Transverse is that the binary control needs to be Decoded with a QECC specific function (turning the set of physical qubits back into a logical qubit that can be checked against zero and one).

QECC itself is an abstract class that needs specific elements (added by the user) to turn it into a code that may be simulated. We'll walk through the definition of a specific CSS code (Steane [[7,1,3]]) which is provided with LIQUi\|>.

First, we need to derive our code implementation from QECC. The base class requires the number of "scratch" qubits we want (called Ancilla, which are typically used for syndrome measurement and control) as well as the number of physical qubits that make up a logical qubit. In addition, we need to provide the circuit that we want to convert from standard to fault tolerant:

```
type Steane7(tgt:Circuit) =
    inherit QECC(6,7,tgt)
    let aCnt = 6
    1et cCnt = 7
```

Example 51: Steane 7 constructor definition
When we decode measured values, we'll need to know what the legal representations of a logical 0 and logical 1 are:

```
// Here are the logica1 0 and 1 codes (for decoding)
let logịca10 = [0x00;0x55;0x33;0x66;0x0F;0x5A;0x3c;0x69]
let logica11 = List.map (fun c -> c ^^^ 0x7F) logica10
```

Example 52: Logical values for Steane7
The first operation we need is the one that prepares a set of physical qubits into a logical $|0\rangle$ qubit:

```
/// Prep gate for Steane7
let prep (qs:Qubits) =
    1et nam = "S7_Prep"
    1et nam2= "s7\\nPrep"
    let gate (qs:Qubits) =
        // Create logical |0> prep circuit
        1et op (qs:Qubits)=
```

```
            1et \(\mathrm{xH} \mathrm{i}=\mathrm{H}\) [qs.[i]
            let xC i \(j=\) CNOT [qs.[i];qs.[j]]
            xH 6; \(\quad\) xC \(63 ; x H 5 ; \quad x C 52 ; x H 4\)
            xC 41 ; xC 53 ; xC 42 ; XC \(60 ;\) xC 61
            xC \(50 ; x C 43\)
            Gate. Build(nam,fun () ->
            new Gate(
                Qubits = qs.Length,
                Name \(=\) nam
                Help = "Prepare logical 0 state",
                Draw \(=\) sprintf Error! Hyperlink reference not valid.
                                    (qs.Length-1) nam
                            Op
        ))
(gate qs).Run qs
```

Example 53: Steane7 preparation Gate
This looks just like the Gates we've seen before. It's made up of a bunch of Hadamard and CNOT gates. The circuit for it looks like this:

Figure 13: Steane7 Prep Circuit
What this circuit does is create a superposition of all the legal codes for a logical $|0\rangle$ state.

Next we need to provide the syndrome measurement, decode and fix Gate this is a very complicated Gate and much of the detail will not be discussed here (see the references from the Introduction for more details). However, let's get a flavor for the "fix" section:

```
// Fix up a syndrome measurement
1et fix (syn:int) (f:Qubits->unit) (qs:Qubits) =
    let nam (syn:int) (f:Qubits->unit) (qs:Qubits) =
    let gate (syn:int) (f:Qubits->unit) (qs:Qubits) =
            let parent qubits) = !< f qs
            1et op (qs:Qubits)=
                let b0 = qs.[0].Bit.v
                    let b1 = qs.[1].Bit.v
                    1et b2 = qs.[2].Bit.v
```

```
    1et \(b s=(b 0 \lll 2)+(b 1 \lll 1)+b 2\)
    // If we match the syndrome, then do the parent
    bs = syn
    else false
        new Gate(
        Name = nam,
        Help = "Fix syndrome measurements",
        Draw \(=\) sprintf "\\cwx[\#3]\\control\%s\\go[\#1]
                            \control\%s\\go[\#2] \\control\%s"
                (if syn \&\&\& 4 <> 0 then "" else "o")
                (if syn \&\&\& 2 <> 0 then "", else "o")
        Op \(=\operatorname{BCOp}(3, o p)\),
        Parent = Some parent
    )
(gate syn f qs). Run qs
```

Example 54: Fix a detected error in Steane7
This Gate is a binary controlled operator (BCOp) that reads 3 Ancilla, decodes them, sees if they represent the specific syndrome we're looking for... and if so, applies the Parent Gate we were handed (f). It is called 7 times for possible x flips (Ancilla representing errors 1-7) and 7 more times for possible z flips. The parent Gate that does this is:

```
// Syndrome measurement
let synd (qs:Qubits) =
    let nam = "S7_syn"
    1et nam2= "S7\nSyn"
    1et gate (qs:Qubits) =
        // syndrome ops (assume first 6 qubits are ancilla)
        1et op (qs:Qubits) =
            let xH i = H [qs.[i]]
            let xXs i js 
            for j in js do
            CNOT [qs.[i];qs.[j]]
            let xZs i jus js do =
            for j in js do
                Cgate Z [qs.[i];qs.[j]]
            let xM i = M [qs.[i]]
            let xFX syn i = fix syn x !?(qs,[3;4;5;i])
            let xFZ syn i = fix syn z !?(qs,[0;1;2;i])
            let xR i = Reset Zero [qs.[i]]
            // Measure syndrome
            for i in 0..5 do xH i
            xXs 0 [9;10;11;12]
            xXs 1 [7;8;11;12]
            xXs 2 [6;8;10;12]
            XZs 3 [9;10;11;12]
            XZs 4 [7;8;11;12]
            xZs 5 [6;8;10;12]
            for i in 0..5 do xH i
            for i in 0..5 do xM i
            // Error correct
```

```
        for syn in \(1 . .7\) do
        xFX syn (5+syn)
        xFZ syn ( \(5+\) syn)
        // Reset ancilla back to zero
        for a in 0..5 do xR a
    Gate. Build(nam,fun () ->
        new Gate(
        Qubits = qs.Length,
        Name \(=\) nam
        Help = "Measure/Fix Syndrome",
        Draw = sprintf "\\multigate\{\#\%d\}\{\%s\}"
                            (qs.Length-1) nam,
        ))
        op \(\quad=\) WrapOp op
(gate qs).Run qs
```

Example 55: Full syndrome Gate for Steane7
We will not go through the details here (left for an exercise to the reader ()). However, the circuit generated looks like this:

Figure 14: Steane7 Syndrome Circuit
The left half (through the Measurement boxes) is the syndrome measurement while the right half is the application of the "fix" gate 14 times (count the controlled x and z gates). At the very end, the Ancilla are reset from Bits back to $|0\rangle$ Qubits for use the next time.

In the actual Steane7 class, we now can start overriding the abstract members:

```
override s.Prep qs = prep qs
override s.Syndrome qs = synd qs
override s.Replace(g:Gate) = base.Replace g
```

Example 56: Steane7 override definitions

Strictly speaking, we did not have to override Replace since the default QECC definition builds a set of Transverse Gates (which is what we need for Steane). The actual definitions of the gates are held in a dictionary:

```
// Default gate dictionary
1et dic =
    let dic = Dictionary<Gate,Qubits->unit>()
    1et q = [ket.Qubits.[0]]
    dic.Add(!< CNOT ket.Qubits,Transverse cCnt CNOT)
    dic.Add(! < H q,Transverse cCnt H)
    dic.Add(!< S q,Transverse cCnt S)
    dic.Add(!< X q,Transverse cCnt X)
    dic.Add(!< Y q,Transverse cCnt Y)
    dic.Add(! < Z q,Transverse cCnt Z)
    dic.Add(!< I q,Transverse cCnt I)
    dic.Add(!< M q,Transverse cCnt M)
    dic
```

Example 57: Transverse gate dictionary
The default Replace function is implemented as:

```
default q.Replace(g:Gate) =
    if dic.ContainsKey g then Some dic.[g]
    else
            match g.op with
            | BCOp(1,_)-> // Only single binary supported for now
            let gParent =
                    match g.Parent with
                        | None ->
                        failwith "> "QECC: BitCon needs a Parent gate"
                            | Some g -> g
            let T_Parent =
                    match q.Replace gParent with
                        | None ->
                        failwithf "QECC; BitCon missing gate: %s"
                        gParent.Name
                            | Some f -> f
            T_BC q.Decode T_Parent |> Some
                    -> None
```

Example 58: Default Gate replacement function
QECC also provides two useful functions that will help us write Decode:

1. Log2Phy which will take a logical wire number and return the physical qubits associated with it.
2. Getmeasured which will take a set of measured physical qubits and return a single hex value the represents the code measured ($0-2^{n-1}$)

We can now write our Decode function:

```
// Compute bit best distance between codes
1et bestCode measured =
    let best logica1=
```

```
    1et rec dist a b v =
        if a = 0 && b = 0 then v
        elif (a &&& 1) ^^^ (b &&& 1) <> 0 then
            dist (a>>>1) (b>>>1) (v+1)
        else dist (a>>>1) (b>>>1) v
    List.mapi (fun i c -> i,(dist c measured 0)) logical
    |> List.minBy (fun (i,d) -> d)
    // Find min distance to a logical 0 code
    let best0,dist0 = best logical0
    let best1,dist1 = best logica11
    if distO <= dist1 then zero,distO else One,dist1
override s.Decode (qs:Qubits) =
    let measured = base.Getmeasured qs
    bestCode measured
```

Example 59: Decode implementation for Steane7
What this does is see if the number we measured is closer to a logical 0 or a logical 1 and then return a zero or one accordingly (along with the Hamming distance to that code).

We now have a complete implementation of a QECC. The one function not mentioned that is provided in the QECC class is: Inject (prob). This will inject random X, Y and Z gates into the Circuit with the given probability on each wire in the circuit. The current version only injects before a Wrapped gate (e.g., all the Transverse versions of a gate). This means that errors can be inserted before measurement... but they will be fixed classically via the Decode function (hence the need to return the Hamming distance).

The circuit returned by Steane7 can be simulated directly (like any other circuit)... however, we quickly reach the limits of LIQUi|>. Just for teleport, which is only 3 qubits in size... the Steane7 version is now 27 qubits! ($3 * 7+6$ Ancilla). A better way is clearly needed and that brings us to the next section.

Stabilizers

Simulating large numbers of qubits

OECC circuits are a good example of where our Functional Simulator is severely limited. As the number of qubits (n) grows, the memory required to store the state of the system grows as 2^{n}. We quickly run out of memory to hold the simulation. There is a way around this if we're willing to limit the types of operations that we'll allow in a circuit.

If we restrict ourselves to operations from the Clifford-Stabilizer framework (see references from the Introduction) then the state we need to maintain will grow
linearly with n instead of exponentially. The Gates that are allowed for use in LIQUi|> Stabilizers are:
H, CNOT, S, X,Y,Z, I, M, Reset, Restore, CGate X, CGate Z, BC, wrap

This is by no means a universal set of gates. However, it does include all the gates necessary to investigate QECC, so it's very useful for that purpose.

Another restriction is that Qubit states must be $|0\rangle$ or any state reachable by applying the Gates listed above (no teleport with "random" states). In fact, let's do a teleport of the value $|1\rangle$ using Stabilizers. First, we start with the definition of teleport we've used in all the other examples, but we'll add a state-flip at the beginning and a measurement at the end:

```
let tele1 (qs:Qubits) = X qs; teleport qs; M [qs.[2]]
```

$$
\text { Example 60: Teleport of }|1\rangle \text { with final measurement }
$$

This gives us a $|1\rangle$ for the input message (by flipping the 0 Qubit with an x) and then measuring the result on Qubit 2 so we can see what happened. Let's just run the function normally:

```
let k = Ket(3)
1et qs = k.Qubits
telel qs
show "te]e1 returns: [%d%d] => %d"
    qs.[0].Bit.v qs.[1].Bit.v qs.[2].Bit.v
```

Example 61: Running the tele1 function
A typical output would be:

```
tele1 returns: [00] => 1
```

Example 62: tele1 result
Our message of 1 was teleported from the beginning to the end (as expected). Now, let's compile it into a Circuit and create a Stabilizer instance for it and run it:

```
let tgtc1 = Circuit.Compile tele1 qs
1et stab = Stabilizer(tgtc1,k)
stab.Run()
let _,b0 = stab.[0]
1et _,b1 = stab.[1]
1et _,,b2 = stab.[2]
show "tele1 stabilizer: [%d%d] => %d" b0.v b1.v b2.v
```

Example 63: Stabilizer simulation of tele1
We get the same result as before, but now we've used a simulator that can handle thousands of qubits at one time. One difference is that we have to ask the

Stabilizer for the values of the Qubits (stab. [0]) because they are maintained in a different simulator with different statistics. For example, the first returned value (which we ignored using "_") is a Boolean that lets us know if the result was random or deterministic.

We can also query the Stabilizer simulator for its state at the end of the simulation:

```
show "==== Final State: "
stab.showState showInd 0
    0:0000.1/=== Fina1 State:
    0:0000.1/
    0:0000.1/-x..
    0:0000.1/-.XX
    0:0000.1/-..X
    0:0000.1/----
    0:0000.1/-Z..
    0:0000.1/+.z.
    0:0000.1/-.zZ
```

Example 64: Final Stabilizer tableau
This shows the status of the various generators. We can also ask for a Gaussian reduction of the state:

```
stab. Gaussian()
show "=== After Gaussian: "
stab. ShowState showInd 0
    0:0000.1/=== After Gaussian:
    0:0000.1/
    0:0000.1/-X. .
    0:0000.1/+. \(x\).
    0:0000.1/-.. \(X\)
    0:0000.1/----
    0:0000.1/-Z.
    0:0000.1/+.z.
    0:0000.1/-..z
```

Example 65: Gaussian Stabilizer tableau
Of course, teleport isn't very interesting (in terms of size)... but if do a Steane7 code on the teleport circuit and then run it (see the QECC.fsx script for an example), we can look at a much more complex final tableau:

```
0:0000.1/==== Final State:
0:0000.1/
0:0000.1/+.........ZZZZZ...XXXX.......
0:0000.1/+..ZZ...ŻŻ..ZZ.ŻXZ.Y.Y..XX.ẌX.
0:0000.1/+..Z..........Y.Z.ZXY..X.XX.
0:0000.1/+...X.............................
0:0000.1/+..... .............................
0:0000.1/+. . .. .x............................
0:0000.1/-......x.x....xx.
    0:0000.1/-. . . . . .X..X.X. . . . . . . . . . . . .
    0:0000.1/-...........x.xX.
    0:0000.1/+..........XXXX.................
```


Example 66: QECC teleport Stabilizer tableau

The code we need to change is fairly simple:

```
let s7 = Steane7(tgtc1)
let s7c = s7.circuit
let stab = Stabilizer(s7c,s7.Ket)
stab.Run()
```

Example 67: Running teleport with QECC under a Stabilzer simulation
All we did was take the original circuit, create an instance of Steane7 and then use the circuit from the Steane7 instance (and the Ket vector with all the new physical Qubits) to create the instance of the Stabilizer simulator.

To look at the values, we need to decode the final measurements from physical qubits back to logical qubits:

```
1et bit0,dist0 = s7.Log2Phys 0 |> s7.Decode
1et bit1,dist1 = s7.Log2Phys 1 |> s7.Decode
1et bit2,dist2 = s7.Log2Phys 2 |> s7.Decode
Example 68: Decoding QECC output
```

Once more, we have Bits returned as well as their Hamming distance to a legal code.
The Advanced Topics section (in Basic Operations) has a good example of what the circuit looks like with error injection. A typical run of the QECC test may be invoked with the following command. Typical output from running teleport of $|0\rangle$ and $|1\rangle$ looks like this:
> Liquid __QECC()

| | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | InjectedXYZ $(0,1,0)$ | Fixes=2 | One, Zero, Zero) | |
| | | | | | |
| | | InjectedXYZ $(0,1,1)$ | Fixes=0 | (Zero,Zero,Zero) | |
| | | InjectedXYZ (1,1,0) | Fixes=3 | (Zero, One, Ze | |
| 0:0000.1/LOOP | | InjectedXYZ $(1,0,0)$ | | | |
| 0:0000.1/LOOP | | InjectedXYZ $(0,1,0)$ | Fixes=2 | (Zero, One,Zero) | |
| 0:0000.1/LOOP | | InjectedXYZ $(1,0,0)$ | | One, Zero, Ze | |
| 0:0000.1/LOOP | [Ze | InjectedXYZ (1,1,0) | Fixe | (One, zero,ze | |
| 0:0000.1 | | InjectedXYZ 0 | Fi | (One, On | |
| | | | |) | |
| 0:0000.1/LOOP | | Inje | | (Zero, One, One) | |
| 0:0000.1/LOOP | [On | InjectedXYZ (0,0,1) | ixes=1 | One, One, One) | |
| 0:0000.1/LOOP | [On | InjectedXYZ (0,1,1) | Fixes=3 | (Zero,zero, One) | |
| 0:0000.1/LOOP | [On | InjectedXYZ (0,0,1) | Fixes=1 | One, One, One) | |
| 0:0000.1/LOOP | [0n | InjectedXYZ (0,0,1) | Fixes=1 | One, Zero, One) | |
| 0:0000.1/LOOP | [0n | InjectedXYZ (1,0,0) | Fixes=1 | (Zero,zero, One) | |
| 0:0000.1/LOOP | [One7 | InjectedXYZ (0,1,0) | Fixes=1 | (Zero, One, One) | ist= (0,0,0) |
| 0.0000.1/L00 | [0n | InjectedXYZ $(1,0,1)$ | Fixes=0 | (Zero,Zero, One) | |
| :0000.1/LOO | [On | InjectedXYZ (1,1,0) | Fixes=3 | (Zero, One, One) | ist= $(0,0,0)$ |

Example 69: Command line QECC test with Stabilizers

This shows that Qubit 2 always got the right answer even though we injected errors in the form of random X, Y and Z gates. The Fixes= column shows the number of errors detected by the error syndrome and were fixed (X or Z flips). The di st= column shows the Hamming distance for each measured bit from a good code. The two that aren’t 0 are because the errors were injected just before measurement and therefore were classical and could not be fixed by QECC (but were fixed correctly by the Decode function).

ADVANCEDNOISEMODELS

Chapter

Advanced Noise Models

Simulating the real world

Real world noise is much richer than the de-polarizing channel discussed in previous chapters. Here we'll apply a much more sophisticated model to represent both unitary and non-unitary noise sources.

Noise class

The Noise class provides a harness for circuits that will run them, inject noise and gather statistics. Noise maybe Unitary (e.g., polarizing) or non-Unitary (e.g., a decoherence event).

NoiseEvents class The NoiseEvents class is used to keep track of summary noise statistics for a circuit being analyzed. It stores the number of times a gate was executed, how many times noise was applied to a gate and the total number of noise events (may be multiple per application).

NoiseModel class NoiseModel holds all the information necessary to model noise for a gate time. Gate names may have a trailing '*' to allow for wild-carding. In addition to execution time for the this particular gate there are separate statistics kept for gates that are part of the normal computation and gates that are part of the error correction circuitry (e.g., syndrome circuits). Each NoiseModel may have its own custom Noise Function which allows the user full flexibility in defining the specific characteristics of their noise model.

NoiseStat class
Detailed statistics stored for each noise event that occurs.

Full Example

The best way to show how to implement a noise model is to work through a full example. We will use the one that appears in samples as Noi seAmp.fsx (this is also the _ NoiseAmp() test built in to LIQUi|>). Our goal will be to simulate a simple circuit over time and watch the effects of various types of noise:

Figure 15: Circuit for Noise Analysis
We will prepare the circuit with a two qubit Ket vector and then apply a Hadamard and CNOT in the normal way so that we're ready to run the idle gates with a noise model. The actual noise model setup, looks like this:

```
// Create Idle circuit
let circ = Circuit.Compile (fun (qs:Qubits) -> I >< qs) ket.Qubits
// Create noise model
let mkM (p:float) (g:string) (mx:int) =
    {Noise.DefaultNoise p with gate=g;maxQs=mx}
let models
            = [
        mkM 0.0 "H" 1
    mkM 0.0 "CNOT" 2
    mkM probPolar "I" 1
]
let noise = Noise(circ,ket,models)
```


Example 70: Create a noise model

This will give us a circuit with one Idle gate (I) in each qubit. We also define noise models for each gate type we might use. In this case, we're only going to run an Idle gate, but we can list the probability of noise per unit time for each gate type we're going to use. Gate names may have an asterisk $\left(^{*}\right)$ as a wild-card. In fact the entire name can be "*"" which will apply that noise probability to all gates with the supplied qubit count.

For each of the gates, we chose to use Noise.DefaultNoise which creates a NoiseModel that implements depolarizing noise. The function can be replaced by the user with a different noise model if desired. The function itself is handed three arguments:

- Time: Amount of time spent in this gate (which may actually cover several sequential executions).
- Duration: Time to run one instance of the gate (Time/Duration is (approximately) the count of gate executions for this call
- Qubits: Qubits to apply noise to

If you define your own function (f), the easiest thing to do is to call "NoiseModel.Default f " which will initialize a NoiseModel that you can then override (as shown in Example 70: Create a noise model.

Now that we have a Noise class, we need to set desired options:

```
noise.LogGates <- false // Show each gate execute?
noise.TraceWrap <- false
noise.TraceNoise <- false
noise.DampProb(0) <- probDamp
noise.DampProb(1) <- probDamp
```

Example 71: Noise options
The first three are logging options (you can make things very verbose if desired). The last two are where we get to define which qubits we wish to have an Amplitude Damping model defined. This will give us both Unitary and non-Unitary effects. DampProb() for a given Qubit ID defines the probability of an amplitude damping decoherence event happening. If you are modeling a system that has a fastest gate time of T_{g} and has a decoherence time of T_{1}, then the probability that you want to use is $\exp \left(-T_{g} / T_{1}\right)$ provided you define the time for all other gates in terms of T_{g}. The next section gives full detail on the specific Amplitude Damping model used in LIQUi|>.

In the sample file, we do one more preparatory step. We collapse the ket state vector into a single dense vector and remember the vector (so that we can dump out running statistics as we go). We're now ready to run:

```
// Get a handle to the state vector for output
let v = ket.Single()
dump 0 v
for iter in 1..500 do
    if iter = 1 then noise.Run ket else noise.Run()
    dump iter v
noise.Dump(showInd,0, true)
```

Example 72: Running the noise model
The actual run with noise is very simple. The first time we initialize by handing in a Ket vector (noise.Run ket) and for continued runs, we just drop the parameter

68

(noise.Run()). This allows us to gather statistics across as many runs as we'd like (in this case after each pair of Idle gates).

The dump call (implemented in the sample file) will give us statistics at each of the 500 time steps we ran for:

\[

\]

This is more interesting if plot the results (the output is already in CSV format:

Figure 16: Output from Noise run
We can see the Unitary amplitude damping (sloped lines), the depolarization (where states are flipping between $|0\rangle$ and $|1\rangle$ and decoherence (where states are collapsing to $|0\rangle)$. We also get a summary table at the end of the run:

In the first part we see that there were 1000 executions of the Idle gate (two each time) and 2 amplitude damping (decoherence) events. It also shows that there were 3 applications of de-polarizing noise. We can see the detail in the second table showing what time each event happened (and see the events in the graph above).

Amplitude Damping

he specific Amplitude Damping channel used $\left(\mathcal{E}_{A D}\right)$ on a single qubit ρ is a
CPTP map defined as':

$$
\varepsilon_{A D}(\rho)=K_{1} \rho K_{1}^{\dagger}+K_{2} \rho K_{2}^{\dagger}
$$

Equation 5: Amplitude Damping Channel
where

$$
K_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & \sqrt{1-\rho_{A D}}
\end{array}\right), \quad K_{2}=\left(\begin{array}{cc}
0 & \sqrt{\rho_{A D}} \\
0 & 0
\end{array}\right)
$$

Equation 6: Krauss operators
are Krauss operators (satisfying $K_{1}^{\dagger} K_{1}+K_{2}^{\dagger} K_{2}=\mathbb{I}$). The amplitude damping channel describes a process in which the state $|1\rangle$ can relax to the state $|0\rangle$ with some probability $\rho_{A D}$. If the input state is $\left|\psi_{i n}\right\rangle=a|0\rangle+b|1\rangle$, where $|a|^{2}+|b|^{2}=1$, then we will observe the output state to be

[^0]\[

\left|\psi_{out}\right\rangle=\left\{$$
\begin{array}{c}
\frac{a|0\rangle+b \sqrt{1-\rho_{A D}}|1\rangle}{\sqrt{1-\left|b^{2}\right| \rho_{A D}}}, \text { with probability } 1-|b|^{2} \rho_{A D} \\
|0\rangle, \quad \text { with probability }|b|^{2} \rho_{A D}
\end{array}
$$\right.
\]

Equation 7: Output state
Let us analyze what happens if we apply the amplitude damping channel $\varepsilon_{A D} \otimes \mathcal{E}_{A D}$ to an entangled two-qubit state, for example a Bell pair $\left|\psi_{i n}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$. One can check that the output state is

$$
\left|\psi_{\text {out }}\right\rangle=\left\{\begin{array}{c}
\frac{|00\rangle+\left(1-\rho_{A D}\right)|11\rangle}{\sqrt{1+\left(1-\rho_{A D}\right)^{2}}} \text {, with probability } 1-\rho_{A D}+\frac{1}{2} \rho_{A D}^{2} \\
|10\rangle, \text { with probability } \frac{1}{2} \rho_{A D}\left(1-\rho_{A D}\right) \\
|01\rangle, \text { with probability } \frac{1}{2} \rho_{A D}\left(1-\rho_{A D}\right) \\
|00\rangle, \text { with probability } \frac{1}{2} \rho_{A D}^{2}
\end{array}\right.
$$

Equation 8; Two Qubit Amplitude Damping

Note that we observed the output state $\left|\psi_{\text {out }}\right\rangle=|01\rangle$, then only the first qubit relaxed; similarly for the $|10\rangle$ state. If $\left|\psi_{\text {out }}\right\rangle=|00\rangle$, then both qubits relaxed. One can notice that the entanglement survives (i.e. the output state $\left|\psi_{\text {out }}\right\rangle$ is not a product state) only if no qubit undergoes a relaxation process (and $\rho_{A D} \neq 1$).

Usually, to simulate the effects of the amplitude damping noise on a circuit, we imagine performing ideal gates of the circuit followed by the amplitude damping channel. If the relaxation time of a qubit is T_{1} and the execution time of a gate is t, then the probability $\rho_{A D}$ for the qubit to relax while the gate is being applied is $\rho_{A D}=1-\exp \left(-\frac{t}{T_{1}}\right)$.

Noise + QECC

One of the more useful applications of the advanced noise modeling capability is to apply it to quantum error correction. The system lets you analyze how errors in the data sections and syndrome sections of the circuit affect correctness.

The Noise1.fsx file in samples shows how to apply complex noise models to QECC (this can also be run directly from LIQUi|〉 as __Noise1(depth,iters, prob)). This circuit only has one logical qubit and a specified number of Idle gates. The parameters to the function are:

- Depth: How many Idle gates to use in the circuit.
- Iters: How many runs of the circuit to use for gathering statistics
- Prob: Probability of an error occurring

A typical call would be:

The statistics at the end (HIST) are:

- Gate: Number of errors injected in the actual circuit (the 7 physical copies of the Idle gate that represents the one logical gate)
- ec: The number of errors injected into the error correction circuitry. Since these are the majority of the gates, this is where most of the errors occur
- good: Number of time the circuit generated the right answer
- all: Total number of runs for the circuit
- frac: Fraction of the runs that were correct

The details of this test can be found in the sample file. However, there are a few new techniques that we haven't seen before that are worth mentioning:

```
let prep' = prep.Reverse()
noise.NoNoise <- ["S7:Prep"]
noise.ECgates <- ["S7:Prep";"S7:Syn"]
```

Example 76; New noise techniques

Once the circuit completes running, we execute a reversed version of the prep circuit which will convert the 7 physical qubits back to a logical qubit. If we then measure that qubit, we can see if it's in the correct state. The NoNoise property states which circuits will not have noise added. We've placed the name of the prep circuit here so that we can prepare everything perfectly (without nose injection). Likewise, the ECgates property is used to tell the Noise class which circuits are the error correction ones (this is how it knows the difference between data gates and syndrome gates).

Channels and POVMs

The most general and sophisticated noise model available in the system is implemented via a Channel gate type. Channels are implemented using a list of Kraus operators on one or more qubits. In addition, the system will report which operator was applied (its index), yielding a generalized measurement also known as a positive-operator value measurement (POVM). This section will describe a complete example (that is built into LIQUi|>) showing how to define Channel gates, utilize them in Circuits, gather statistics and analyze the results.

LIQUi| \rangle comes with two examples of Channel gates: AD, an Amplitude Damping channel:

```
let AD (prob:float) (qs:Qubits) =
    let gate (prob:float) =
        Gate.Build("AmpDamp_" + prob.ToString("E2"),fun () ->
        new Gate(
            Name = sprintf "AD%.2g" prob,
            Help = sprintf "Amplitude Damping channel: %.2g" prob,
            Kraus = [
                        {tag=0;mat=CSMat(2,[(0,0,1.,0.);(1,1,\operatorname{sqrt(1.-prob),0.0)])}}
                        {tag=1;mat=CSMat (2,[(0,1, sqrt(prob),0.0)])}
                ],
            Draw = "\\gate{" + ("AD" + (prob.ToString("E2"))) + "}",
            Op = Channel("POVM")
            ))
        (gate prob).Run qs
```

Example 77: AD (Amplitude Damping) Gate
and DP, which is a Depolarizing channel:

```
let DP (prob:float) (qs:Qubits) =
    let gate (prob:float) =
        let e0 = sqrt(1.-3.*prob/4.)
        let e1 = sqrt(prob/4.)
        Gate.Build("DePol_" + prob.ToString("E2"),fun () ->
            new Gate(
                Name = sprintf "DP%.2g" prob,
                Help = sprintf "Depolarizing channel: %.2g" prob,
            Kraus =
                [
                    {tag=0;mat=CSMat(2,[(0,0,e0, 0.);(1,1, e0,0.)])} // I
```

```
        {tag=1;mat=CSMat(2,[(0,1,e1, 0.);(1,0, e1,0.)])} // X
        {tag=2;mat=CSMat(2,[(0,1,0.,-e1);(1,0, 0.,e1)])} // Y
        {tag=3;mat=CSMat(2,[(0,0,e1, 0.);(1,1,-e1,0.)])} // Z
            ],
        Draw = "\\gate{" + ("DP" + (prob.ToString("E2"))) + "}",
        Op = Channel("POVM")
    ))
(gate prob).Run qs
```

Example 78: DP (Depolarizing Noise) Gate
Each of the channel examples takes a probability of noise occurring and then creates a set of Kraus matrices based on the supplied value. The two changes from making a standard gate are the addition of a Kraus entry that contains the list of operators and a new gate type: Channel(symbol).

Each Kraus operator consists of a record that contains a tag and a matrix (mat). The tag is a numeric Id that will be returned during any generalized measurement (POVM). The matrix may be any legal Kraus operator. The only requirement is that if you take the list of matrices and combine them $\left(\sum M^{\dagger} M\right)$ the result must be the identity matrix.

A channel defined by Kraus operators may apply to multiple qubits, but it is required that all the matrices in the same channel have the same dimension (define different channels for operators that work on different numbers of qubits or have different noise models).

The Channel(symbol) entry tells the system to treat the gate as a channel and that whenever it is called in a circuit, store the tag of the result (which matrix was actually applied) in the state vector symbol table (more on this later). The symbol name that it is stored under is whatever symbol you provide. Typically, we will read back this information right after the application of the channel, so using one name (e.g., "POVM") for all your channels isn't a problem. Make them unique if you have different requirements.

We're now ready to build an example (complete source code is in Samples \backslash Kraus.fsx). The first thing we need to do is to define our noise channel. In this case, we're going to combine amplitude damping with depolarization:

```
let gateAD = !< (AD probAD) qs
let gateDP = !< (DP probDP) qs
let chan = gateAD.OptimizeKraus(gateDP,"K")
let nams = [" I";" X";" Y";" Z";"DI";"DX";"DY";"DZ"]
let dic = SortedDictionary<int*string,int>()
```

Example 79: Build a noise channel
We take both the AD and DP gate functions, hand them a noise probability and then ask the system to return the actual gates that were built. The next call (OptimizeKraus) should always be called when you create channels. It has several important functions and its output is the gate function you should actually apply in your circuit. The first thing it

74

does is analyze your matrices to make sure that they are correct. Secondly, it re-orders your matrices to increase the probability that a matrix earlier in the list will get executed before a later one (maximize trace of $M^{\dagger} M$), making your circuit run faster. This is what will happen if you call OptimizeKraus without any parameters. It also lets you perform useful manipulations of Channel gates:

1. You can provide a second channel gate that will be appended to the calling one. This lets you build up channels from multiple sets of Kraus operators. This is how we're combining Amplitude Damping with Depolarizing noise.
2. You can give the new gate a specific name (instead of the default of $\mathrm{K} \# \# \# \#$ where \#\#\#\# is a random 4-digit hex value).
3. You can provide an Id multiplier which will multiply the Ids of the first gate before adding the Id of the second gate (when it combines matrices). The default is to use a multiplier of the count of the number of gates in the second Channel. For example, if you have Amplitude Damping (2 matrices) and Depolarizing Noise (4 matrices), by default you will get Ids 0-7 assigned to the output matrices (2×4 total matrices). If you gave a multiplier of 10 , you would get $0-3$ and 10-13. This would allow you to use each decimal digit to identify which parent matrix the Id came from.
4. You can create a different POVM symbol (Channel(symbol)) for the output gate.

The last two lines of Example 79 gives labels to each of the 8 generated matrices and creates a dictionary to store statistics in.

The next two functions in the file (saveStat and makeNoisy) are helpers. The first allows us to save POVM measurement statistics in our dictionary and the second creates a "noisy" version of standard gates. The heart of the routine is the Gate.Build call (Example 80). It creates a Wrap gate that performs 3 operations:

1. Execute the original gate (e.g., $\mathrm{H}, \mathrm{CNOT}, \mathrm{X} \ldots$)
2. On each qubit, run the Channel gate we created (chan).
3. On each qubit, use embedded F\# code to ask for the POVM index and save it in a dictionary. This is accomplished via the Native gate which lets us put classical code in the midst of executing circuits.
```
f qs // Run the input function
for i in 0..g.Arity-1 do
    let qs' = !!(qs,i)
    chan qs' // Run the noise channel
    75
```

```
Native (fun (qs:Qubits) -> // Get the POVM result
    let q = qs.Head
    let povm = q.Ket.Symbol "POVM"
    saveStat q.Id povm) qs')
```

Example 80: Application of the noise channel
We can now use our helper function to build noisy versions of the gates we wish to call in our circuit:

| let Hn (qs:Qubits) | $=$ makeNoisy H qs |
| :--- | :--- |
| let Xn (qs:Qubits) | $=$ makeNoisy X qs |
| let Zn (qs:Qubits) | $=$ makeNoisy Z qs |
| let CNOTn (qs:Qubits) | $=$ makeNoisy CNOT qs |

Example 81: Noisy standard gates
This allows us to create a "noisy" Teleport that looks (at the source level) just like the original:

```
// Teleport circuit with noise channel added
let teleport (qs:Qubits) =
    Hn qs.Tail // EPR 2nd two qubits
    CNOTn qs.Tail
    CNOTn qs // Entangle first two qubits
    Hn qs
    M !!(qs,1)
    BC Xn qs.Tail // Conditionally apply X
    M !!(qs,0)
    BC Zn !!(qs,0,2) // Conditionally apply Z
```

Example 82: Noisy Teleport
At this point, we have everything in place to execute our circuit. We'll do that a large number of times and then read the statistics generated in our dictionary. Here's a sample output from 1000 runs with error probabilities of (AmpDamp, Depol) $=(.03, .03)$:

| 0:0000.0/CSV, qId, POVM, Count | |
| :---: | :---: |
| 0:0000.0/CSV, 0, I, | 1916 |
| 0:0000.0/CSV, 0, X, | 13 |
| 0:0000.0/CSV, 0, Y, | 19 |
| 0:0000.0/CSV, 0, Z, | 12 |
| 0:0000.0/CSV, 0,DI, | 39 |
| 0:0000.0/CSV, 0,DZ, | 1 |
| 0:0000.0/CSV, 1, I, | 2914 |
| 0:0000.0/CSV, 1, X, | 24 |
| 0:0000.0/CSV, 1, Y, | 19 |
| 0:0000.0/CSV, 1, Z, | 16 |
| 0:0000.0/CSV, 1,DI, | 27 |
| 0:0000.0/CSV, 2, I, | 1914 |
| 0:0000.0/CSV, 2, X, | 13 |
| 0:0000.0/CSV, 2, Y, | 14 |
| 0:0000.0/CSV, 2, Z, | 8 |
| 0:0000.0/CSV, 2,DI, | 43 |
| 0:0000.0/CSV, 2,DX, | 1 |

```
0:0000.0/CSV, 2,DZ, 1
0:0000.0/CSV,rslt,0.0300,0.0300, 884, 1000,88.4
```

Example 83: Output from 1000 runs
After the "CSV," you can see the qubit Id $(0,1$ or 2$)$ and then the type of measurement (I,X,Y,Z for depolarizing noise and DI,DX,DY,DZ for Amplitude Damping + Depolarizing noise). At the end of the line is the count of occurrences of that type of noise. The last line shows the input parameters, the count of good instances (where we successfully teleported a $|1\rangle$). In the samples directory, there is also a small script (Kraus.cmd) that shows how to iterate over many sets of parameters to obtain a heat map. If you plot the generated "csv, rslt" lines, you get:

| | | 1000 samples at each point | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| \%Good Depol | | | | | | | | | | |
| Amp | $\mathbf{0 . 0 0}$ | $\mathbf{0 . 0 2}$ | $\mathbf{0 . 0 4}$ | $\mathbf{0 . 0 6}$ | $\mathbf{0 . 0 8}$ | $\mathbf{0 . 1 0}$ | $\mathbf{0 . 1 2}$ | $\mathbf{0 . 1 4}$ | $\mathbf{0 . 1 6}$ | $\mathbf{0 . 1 8}$ |
| 0.00 | 100 | 94.6 | 93.5 | 88.4 | 85.6 | 84.7 | 79.9 | 77.3 | 75.5 | 73 |
| 0.02 | 95.1 | 92.6 | 88.6 | 86.7 | 81.6 | 82.2 | 74.3 | 73.2 | 71.5 | 68.9 |
| 0.04 | 90.2 | 87.5 | 85 | 80 | 77.8 | 72.9 | 74.4 | 70.2 | 67.7 | 65.7 |
| 0.06 | 84.7 | 84.6 | 79.4 | 75.8 | 77.1 | 73 | 69.3 | 66.3 | 68.2 | 66.9 |
| 0.08 | 83.4 | 79.8 | 73.2 | 73.5 | 70.5 | 70.7 | 70 | 63.9 | 63 | 59.9 |
| 0.10 | 78 | 74 | 71.5 | 70.6 | 67.4 | 66.2 | 67.3 | 62.7 | 57.7 | 60 |
| 0.12 | 75.6 | 71.9 | 73 | 65.8 | 64.3 | 63 | 63.6 | 59.8 | 58.2 | 57.6 |
| 0.14 | 70.9 | 68.6 | 64.8 | 66.4 | 63.2 | 59.5 | 62 | 59.9 | 55.5 | 54.6 |
| 0.16 | 67.9 | 65.3 | 62.7 | 64.3 | 61.7 | 60.4 | 57.3 | 56.6 | 53.3 | 56.3 |
| 0.18 | 63.4 | 62.4 | 60.8 | 58.2 | 56.7 | 55.9 | 52.8 | 52.8 | 53.8 | 54.1 |

Figure 17: Noisy Teleport sensitivity to errors

Hamiltonian Mode

Simulating the physics

The third simulator in LIQUi|> (after Universal and Stabilizer) is the Hamiltonian simulator. This environment allows you to define circuits that represents various types of Hamiltonians and to efficiently simulate them.

We've previously mentioned the gates that support Hamiltonians in the section on Built-In gates. All of these gates appear in module Hami ltoniangates.

Hamiltonian class

The Hamiltonian class is at the base of the simulator, but is never used directly. Instead, one of the two derived classes that follow are instantiated by the user.

Spin-Glass simulation

Spin class
The Spin class is used to define Spin-Glass problems to the system. The Hamiltonian being simulated is:

$$
H=\Gamma(\mathrm{t}) \sum_{i} \Delta_{i} \sigma_{i}^{x}+\Lambda(\mathrm{t})\left(\sum_{i} h_{i} \sigma_{i}^{Z}+\sum_{i<j} J_{i j} \sigma_{i}^{Z} \sigma_{j}^{Z}\right)
$$

Equation 9: Adiabatic Hamiltonian

We are starting in a ground state that we know in the σ_{x} direction $(\Gamma=1, \Lambda=0)$ and ending in a target state in the σ_{z} direction (when $\Gamma=0, \Lambda=1$) which we'd like to discover. This is referred to as an adiabatic evolution since it is expected that if we move slowly enough (changing Γ, Λ) we can stay in the ground state of the entire system and smoothly move to the solution. The changing of strength over time is called the annealing schedule and typically looks like this:

Figure 18: Typical Annealing Schedule

There are two main ways to instantiate the class. The first is the "bottom level" version that lets you specify everything:

```
type Spin(
    spinTerms : SpinTerm list,
    numSpins : int,
    runMode : RunMode)
```


Example 84: Spin constructor (1)

The constructor arguments are:

1. spinterms which are a list of elements that contain:
a. schedule: 0 based index of an annealing schedule that will be used
b. op: Operatrion (Gate) to apply. Typically ZR or ZzR
c. amp7:Amplitude (strength) of this term
2. numspins: How many spins are there (qubits)
3. runMode: Trotterization to use:
a. Trotter1: First order Trotter term
b. Trotter1x: Split the transvers (x) field terms to the start and end of the Circuit
c. Trotter2: Second order Trotterization

The second form of the constructor takes care of many of the details for you:

```
type spin(
    hs : Dictionary<int,float>,
    Js : Dictionary<int*int,float>)

> Example 85: Spin Constructor (2)
```

The constructor arguments are:

- hs - Create a dictionary for each qubit that you want to provide a strength to in the range (typically) of -1.0 to +1.0 . These are the ZR terms.
- Js - Coupling strength between two Qubits. This is a dictionary of qubit Id pairs and strength. Only Ids where the first is less than the second is searched for $(\mathrm{i}<\mathrm{j})$ and typical values are -1.0 which is ferromagnetic coupling and +1.0 which is anti-ferromagnetic coupling ($0.0=$ no coupling). These are the ZZR terms.

Note that there's no XR term, since it's implied automatically and is on annealing schedule 0 . The ZR and ZZR are terms on automatically placed on schedule 1.

Two built-in static members are available to aid in setting up spin-glass systems. Let's go through the example provided in the samples directory (Ferro.fsx) which simulates a ferromagnetic chain. The file shows both static members, but let's just go over the simpler one here:

```
let tests = 50 // Tests to run
let qCnt = 12 // Qubit count
let h0 =1.0 // h0: Left most qubit z strength
let hn =-1.0 // hn: Right most qubit z strength
let coupling= 1.0 // 1=ferro -1=anti-ferro 0=none
let sched = [(100,0.0,1.0)] // Annealing schedule
let runonce = true // Runonce: Virtual measurements
```

```
1et decohere= [] // No decoherence mode1
Spin.Ferro(tests,qCnt,h0,hn, coup7ing, sched, runonce, decohere)
Example 86: Ferromagnetic script
```

The arguments are:

- tests: How many instances to run.
- qCnt: Total number of qubits to use as spin terms
- ho: Strength of the h term on Qubit $0 .+1=$ Force spin up
- hn: Strength of the h term on the last Qubit. $-1=$ Force spin down
- coup7ing: Strength of the between qubit terms (build a ferromagnetic chain by specifying +1.0)
- sched: At time 0 , schedule 0 is always 1.0 (the σ_{x} term) and all the other schedules are at 0.0 . For this reason, we only need to specify the ending point for the schedules. Here we've specified a final time of 100 where the σ_{x} term (schedule 0) becomes 0.0 and the σ_{z} terms (schedule 1) become 1.0.
- runonce: This is a simulation optimization that lets us run a test once and then look directly into the state vector (since we're a simulator) and obtain all the probabilities instead of running 100s or 1000s of times and measuring to get the same result (which we'd have to actually do on a quantum computer).
- decohere: This is an advanced option that allows dechoherence models to be plugged in. For this test, we're using perfect qubits.

What we've done is created a twisted chain (one end up; one end down) so when we simulate, we get both details for 1 run and a histogram across all runs:

Example 87: Output from Ferromagnetic run

The detailed output shows the probability of each qubit between 0 and 1 (tending to $0,+=$ tending to 1 and.$=$ no tendency). The histogram shows each case seen, what percentage of the runs fell into that category and the final energy (showing we reached the ground state). The test also generated two diagrams. The first was Ferro.htm which shows all the pieces (as well as the fact that we used Runmode Trotter 1 X visible from the fact that the RpX gates are both at the beginning and end of the circuit):

Figure 19: 12 Qubit ferromagnetic chain
The second diagram shows the Circuit that was actually run after "Gate Growing" was performed:

Figure 20: 12 Qubit ferromagnetic chain (grown)
Here you can see that we only had to do 5 matrix multiplies to perform the entire circuit (major speed-up). One of the reasons not to grow even further is that the circuit changes at every time step (due to the annealing schedule), so spending time optimizing beyond a certain point simply doesn't pay.

The spin.Test (...) static routine allows arbitrary connections (not just chains) and much finer control (including Trotter number). An couple of examples are also provided in the Ferro.fsx script.

Fermionic simulation

Fermion class
The fermion class is used to define Fermionic problems to the system. The Hamiltonian being simulated is (in $2^{\text {nd }}$ quantized form):

$$
H=\sum_{p<q} h_{p q} a_{p}^{\dagger} a_{q}+\frac{1}{2} \sum_{p<q<r<s} h_{p q r s} a_{p}^{\dagger} a_{q}^{\dagger} a_{r} a_{s}
$$

Equation 10: Fermionic Hamiltonian
We are simulating the Bohr model of a molecule where we will ignore the motion of the nuclei since they are massive and can be viewed as fixed in space in comparison to the electrons. The first summation describes single electrons as they move (annihilation: a_{q} and creation: a_{p}^{\dagger}). The second summation describes the interactions between pairs of electrons. These terms lead to the basic gates (Hpp, нpq, Hpqqp, Hpqqr and hpqrs used internally). For more details, see the reference to the various quantum chemistry papers in the introduction.

One item to note is that is that in the two body terms the outer (ps) and inner (qr) values must match in parity (spin-up or spin-down)

Fermion is normally accessed via it's static method: Fermion. Run(dic,data). The first parameter is a dictionary of possible arguments (all have defaults) and the second is an array of data containing strengths for the $h_{p q}$ and $h_{p q r s}$ terms (obtained from any conventional molecular chemistry simulator). We'll describe each in detail using the H 2 . fsx sample script as an example. The first thing we need to do is to create a dictionary for all our parameters:

```
1et dic = Dictionary<string,string>() // Parameters to Fermion
dic.["Test"] <- "26", // Test to process in data[]
dic.["Bits"] <- "18", // Bit accuracy
dic.["Trotter"]<- "32" // Trotter number
dic.["Thresh"] <- "-0.6" // Max threshold to accept as an
dic ["Emin"] "-2 5" // energy answer (with nuclear repulsion)
dic.["Emin"] <- "-2.5" // Min possible energy (w/o nuc repul)
dic.["Ecnt"] <- "2"" // Electron count
dic.["SOs"] <- "4" // Spin orbitals
dic.["Preps"] <- "[1;2]" // Prepared start states (list of lists)
    Example 88: H2 Fermoinic dictionary definition
```

Many of these are obvious (if you work in Quantum Chemistry ©) but a few are non-standard:

- Thresh is just a cut-off to say that we don't want any answers with an energy higher than this (keep running until we get a good answer).
- Emin, Emax define the range of our phase estimation (0.0 to 1.0)
- Ecnt is our electron count (H_{2} only has 2 electrons).
- SOs refer to the number of spin orbitals, this is twice the number of orbitals (up and down). In the case of H_{2} we only have 4 SOs.
- Preps are the states to start from the full set for H_{2} would be $[1 ; 2] ;[1 ; 3] ;[1 ; 4] ;[3 ; 4]$ if we wanted to start with 2 electrons in each of the legal spin orbital configurations (SOs start at 1).

The data array consists of strings in a specific format that represent a test to run. The elements in each string are separated by whitespace and consist of:

- tst=\# The test number of this line (does not have to be the same as the index in the array).
- info=str Any identifying information that you'd like the simulator to output for this test (in this case the separation of the nuclei).
- nuc=\# Nuclear repulsion term. This is used to calculate the total energy values as opposed to the raw numbers without nuclear repulsion.
- Ehf=\# Energy of the Hartree Fock calculation. This comes for free from your Quantum Chemistry package and can be used to sanity check the simulator results. Note that this term is with nuclear repulsion.
- $\quad \mathrm{i}, \mathrm{j}=\#$ These are the single electron terms. The i and j refer to orbital IDs (starting at 0).
$\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}=\#$ These are the double electron terms. The $\mathrm{i}, \mathrm{j}, \mathrm{k}$ and l refer to orbital IDs (starting at 0).

We give two examples in the samples directory of how to use classical quantum chemistry packages to generate the integrals:

PyQuante See http://pyquante.sourceforge.net/ for details on obtaining, installing and running the package. A sample input file for generating H2O. dat if given in H2O.py. PyQuante is available on Windows.
Psi4 See http://www.psicode.org/ for details on obtaining, installing and running the package. A sample input file for generating H2O.dat is given in H2O.inp. In addition, the sub-directory mointegrals contains sample code for generating the molecular integrals that are placed in a .dat file. Psi4 does not currently run on Windows.

At the bottom of h2.fsx are two examples of running tests (by test number and by Trotter number). The chapter on Quantum Chemistry will give many more options on types of tests that could be run.

To run a single test, we could just type: "fsi h2.fsx" and get back a large set of information. The final, most detailed output is on the lines labeled ! CSv:

$$
\begin{aligned}
& \text { 0:0000.0/! CSV, 1.40,32,1, } \\
& -1.851551055908200,-1.137265055908200 \text {, } \\
& \text { "Р. } 11010110011111111101 \text { ",98.7 }
\end{aligned}
$$

Example 89: Solution for H 2 molecule

We had 18 terms that become 96 gates (see details in the log). We then reduced all the gates to a single unitary and then solved 18 bits of phase estimation yielding a total energy of -1.137265055908200 which was found by measuring a phase of: 11010110011111111101 using single qubit phase estimation.

If we run a full ensemble (with preps of electrons in different orbitals) and plot the results, we get the blue dots in the following figure (energy based on spacing of the nuclei):

Figure 21: Molecular Hydrogen Energy Spectra
We can also do the equivalent for $\mathrm{H}_{2} \mathrm{O}$:

Figure 22: Water Energy vs. Bond Length and Angle
Details of more sophisticated use of LIQUi|> for Quantum Chemistry may be found in the next section.

Quantum Chemistry

In the previous section, we presented a short introduction to running quantum chemistry models. Now we would like to give in-depth details of how to utilize the built-in quantum chemistry system that is based on the Fermionic Hamiltonian simulator.
_Chem function
The simplest way to invoke the system is to invoke LIQUi \rangle from the command line with: __Chem("molecule"). Using an illegal argument will provide help:

| > liquid __Chem('") | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0:0000.0/=============== Logging to: Liquid. 10 g opened$0: 0000.0$ Built-in tests: | | | | | | |
| | | | | | | |
| 0:0000.0/ | tag | data | eCnt | sorbs | eMin | eMax |
| 0:0000.0/ | H2 | h2_sto3g_4.dat | 2 | 4 | -3.142 | 3.142 |
| 0:0000.0/ | $\mathrm{HeH}+$ | $\mathrm{HeH}+$-3-21g_8.dat | 2 | 8 | -7.142 | -0.858 |
| 0:0000.0/ | Be | Be_sto6g_10.dat | 4 | 10 | -17.142 | -10.858 |
| 0:0000.0/ | LiH | LiH_sto6g_10.dat | 4 | 10 | -12.142 | -5.858 |
| 0:0000.0/ | HF | hf_sto6g_12.dat | 10 | 12 | -108.142 | -101.858 |
| 0:0000.0/ | BeH 2 | BeH2_sto6g_14.dat | 6 | 14 | -22.142 | -15.858 |
| 0:0000.0/ | H2O | h2o_sto6g_14.dat | 10 | 14 | -88.142 | -81.858 |
| 0:0000.0/ | NH3 | nh3_sto6g_16.dat | 10 | 16 | -71.142 | -64.858 |
| 0:0000.0/ | CH4 | ch4_sto6g_18.dat | 10 | 18 | -57.142 | -50.858 |
| 0:0000.0/ | Li2 | Li2_sto6g_20.dat | 6 | 20 | -20.142 | -13.858 |
| 0:0000.0/ | HC1 | hc1_sto6g_20.dat | 18 | 20 | -468.142 | -461.858 |
| 0:0000.0/ | F2 | f2_sto6g_20.dat | 18 | 20 | -231.142 | -224.858 |
| 0:0000.0/ | H2S | h2s_sto6g_22.dat | 18 | 22 | -413.142 | -406.858 |
| 85 | | | | | | |

0:0000.0/
0:0000.0/Provide your own .dat file in the samples directory with a tag of:
0:0000.0/ "filename:eCnt:sorbs:emin:emax"
0:0000.0/ fileName - file name in samples directory
0:0000.0/ ecnt - electron count
0:0000.0/ sorbs - spin Orbitals (2x number of orbitals)
0:0000.0/ emin - energy min (in Hartree) for Phase Estimation
0:0000.0/ emax - energy max (in Hartree) for Phase Estimation
Example 90: Calling the __Chem function
This shows you all of the built-in molecules that are available. The .dat all live in the samples directory. Each molecule has an associated electron count (eCnt), spin orbital count (sorbs) and energy window (emin, emax).

If we wished to solve for the ground state of water, we could just type: liquid __chem(H 2 O) (the double quotes are optional here). A large amount of information is generated (both at the console and even more in the log file). We will describe the output shortly.

You can also prepare your own molecules (details on the . dat file format were given in the Fermionic simulation section). In that case, you need to provide the ancillary information found at the end of the help output above. For example, to run H 2 O as if you created it yourself, you could type:

```
1iquid __Chem("h2o_sto6g_14.dat:10:14:-88:-81")
```

Example 91: Running your own molecule
This would do the same as the built-in version, but gives the complete syntax for substituting your own .dat file.

ChemFull function When you wish to control many more features of the quantum chemistry package use the __chemFul1 command line function. The arguments to the function are:

- mol: Same argument as for the __chem function described above.
- test: The test number in the .dat file that you wish to run.
- opts: String of all the single character options that you wish to set. There are many of these detailed in the following section.
- trot: The Trotter number that you wish to use. Typically this is around 32.
- bits: How many bits of accuracy you want in the phase estimation
- order: This is the Trotter order (currently only 1 or 2). For quantum chemistry, there's really no need to use $2^{\text {nd }}$ order but it's there for comparison purposes.

A typical call would look like: liquid __ChemFull(H20,0,"",32,28,1) which would perform the same function as __chem(H2O).

Quantum
 Options

 ChemistryThe flexibility of the quantum chemistry package lies in the options that are available. All of the options are single characters and will be described in the way that they are logically grouped.

TermOrder sjlımp When simulating a Hamiltonian the order of the terms may greatly influence both the accuracy of the result and the size of the executed circuit (whether terms may be nested or redundant gates removed). The term orders supported by LIQUi|> includes:
? Random term ordering while maintain interleaved PQ and PRRQ terms
I Interleaved PQ and PRRQ terms with lexicographically ordered terms. This is the default if not specified (optimal)
J Jumbled (fully randomized)
L Lexicographic order without interleaving
M Sorted by Magnitude of the terms
P Partial lexicographic ordering (for prettier display)
TermType ACOW There are multiple variants of the PP, PQ, PQQP, PQQR and PQRS circuits implemented. Details on the circuits may be found in the quantum chemistry papers referenced at the top of this manual. These options let you choose among them:

A Ancilla based. Entangle the Jordan-Wigner strings onto one or more ancilla qubits (controlled by other options) instead of with each other directly. This allows for nesting of Hamiltonian terms. Typically not used for simulation.
C CNOT based Optimized circuits. These circuits replace the controlled routines (used for phase estimation) with standard rotations bracketed by CNOT gates. This is to simulate quantum hardware where we don't have controlled rotations available.
N Nest terms if using the A option.
O Optimized circuits. These are the term variants that have their Jordan-Wigner strings moved to the outside so that they can be collapsed out when terms are in lexicographic order.
W Whitfield circuits. These are the original quantum chemistry circuits as described in the Whitfield, Biamonte and Aspuru-Guzik paper.

DropTerms QZpqusz

In some experiments, it's useful to be able to drop terms to see how this affects the result. There are several ways to do this:

Q Drop the PQQP terms completely
Z Drop a random 20% of all PQRS terms
p Drop the PP terms completely
q Drop the PQ terms completely
u Drop the PRRQ terms completely
s Drop the PQRS terms completely
z Scale all the PQRS terms to 80% of their initial value
GrowGates 0DRgh A large part of the efficiency of the system to do quantum chemistry comes from how it reduces circuits to more efficient (large) unitary matrices. In the case of quantum chemistry we can be extremely efficient by only allowing physically realizable states. For example, even though the Hamiltonian for $\mathrm{H}_{2} \mathrm{O}$ takes 15 qubits and would a 32768×32768 matrix to represent it, after removing non-physically realizable states, this can be reduced to just 441×441. All of this depends on the parameters we supply to GrowGates:
$0 \quad$ Turn off parity conservation (same number of up and down electrons enter and exit the operator (conservation of angular momentum).
D Turn off enforcing a difference of 0 between the number of up and down electrons. This needs to be turned off if we have an odd number of electrons.
$\mathbf{R} \quad$ Turn off greedy decimation of the array while terms are being built because we have redundant gates being removed and may not be unitary until the end.
$\mathbf{g} \quad$ Turn off the entire growth into a single matrix and use the full circuit instead (very, Very, VERY slow). This sets single to false.
h Turn off "half-up" ordering of the qubits. The default is to have all the spin-up qubits followed by all the spin-down qubits. This has been found to be a more optimal ordering. By turning this off, you return to a natural ordering where the qubits (in-order) represent: inner-orbital-up, inner-orbital-down, next-orbital-up, next-orbital-down... (fully interleaved).

Parity and Diff refer to optimizations we do if single is true. When we grow a single unitary for the entire circuit we have the option to require parity between the rows and columns (we conserve angular momentum) and guarantee that the number of electrons we start with are the number we end with. Diff refers to the difference we expect between up and down spin counts (don't specify if you don't want this). Since we are looking for ground states with an even number of electrons we expect the number of UP spins - the number of DOWN spins to equal 0 .

Accuracy FUclm~ There are times when you may want to increase (or decrease the accuracy of a computation (independent of the number of bits of the phase estimation). These options let you make several choices:

F Integrals coming from classical quantum chemistry packages are optimized for a Hartree Fock solution. We can use perturbation theory to make the off-diagonal elements more accurate for an FCI solution (which is what the quantum chemistry package is doing. This flag tells the system to do a "diagonal fix-up" of the integrals.
U Use the Hartree-Fock energy (in the .dat file) as well as the nuclear repulsion value to compute an energy range for the phase estimate (overriding the range provided by the user).
c The default accuracy for comparison of complex numbers is 1.0×10^{-18}. This is overkill for many situations (esp. long running computations). The first application of the " c " option reduces the accuracy to 1.0×10^{-11}. Each " c " after the first one will reduce the accuracy by a further $\sqrt{10}$.
1 There are times when a few runs of the computation may not be enough (usually the system does from 10 to 20 depending on the repeatability of the results). By specifying this option, the system will run the experiment 200 times (no matter what the results). Since compiling the circuits is much more expensive than running, this is sometimes a good choice.
$\mathrm{m} \quad$ Multiply the PQRS values by a random perturbation. The random value will be between 0.0 and 1.0. It will always use the same seed, so perturbations will be the same from run to run.
~ This is a more sophisticated random perturbation applied to all Rz gates in the circuit. This will actually happen as the Trotterization occurs and can be used to simulate jitter in actual (physical) rotation angles. The random values range within $\pm 1.0 \times 10^{-4}$.

Output GhSTarw Many types of output may be generated by the system. The section following this one will give detailed examples of what may be computed. Here are the options that control them:

G This option will dump the entire circuit for one pass of the molecule into the Liquid. 10 g file.
H This makes it easy to get data for the created Hamiltonian into other applications (like Matlab). This file creates (Terms_<datFi leName>.txt) which is suitable for loading directly into Matlab with arrays for PP, PQ, PQQP, PQQR and PQRS matrices.
S Normally, the log file only contains information on the first 100 terms in the molecule. This option places all terms in the log file which can be used for analysis outside of LIQUi $\mid>$.
T It is sometimes useful to see what the Term Expectations are, give a state vector. This option shows the expectations of each of the term types from the prep vector as well as after solving the ground state. Here's an example from $\mathrm{H}_{2} \mathrm{O}$:

```
Initial expectation:
            pp: exp=0.730176 sum=0.590136
        pqqp: exp=0.227273 sum=0.269279
            pq: exp=0.014817 sum=0.046850
        pqqr: exp=0.015315 sum=0.054574
        pqrs: exp=0.012419 sum=0.039161
Final expectation:
        pp: exp=0.723948 sum=0.590136
        pqqp: exp=0.224795 sum=0.269279
```

```
    pq: exp=0.019911 sum=0.046850
pqqr: exp=0.019558 sum=0.054574
pqrs: exp=0.011787 sum=0.039161
```

Example 92: H2O Term Expectations
a When dumping a binary Ket vector (see below) it might be interesting to see a human readable version. This option will create Liquid.ket_txt in the current directory (when dumping a binary version is requested).
$\mathbf{r} \quad$ Read in a previously dumped Ket vector (see w) from the Liquid. ket file and use it for the initial (prep) state.
w Write the resulting Ket vector out to a Liquid. ket file.

Run BXf
There are only a few options that globally affect how the system runs:

B Even if a molecule looks too big to run, try to run it anyway.
X No matter what, exit the system after statistics have been outputted but before actually running the molecule.
f Use temporary files to store the phase estimation matrices. This allows much larger molecules to run that could normally fit in memory..

Quantum

Chemistry

Output

When running the system, there is a large amount of output generated (esp. in the Liquid. 1 og file). Some of which isn't immediately obvious. Let's go through running water and seeing what a typical log output looks like. We'll invoke the system with the command: __Chem (H2O).

The first thing you'll see in the log is a list of all the settings being used to run your molecule:

Most of these are settable by the options listed in the previous section as well as parameters to the __ChemFull function. One thing that's interesting to note is that since Halfup is true, you can see that the Preps (where the electrons are initially) fills spinorbtials 1-5 (spin-up) and spin-orbitals 9-12 (spin-down) instead of the interleaved version which would have filled spin-orbitals 1-10.

Next, the system will read in the . dat file and give summary statistics:

Example 94 H2O log, loaded terms
We can see the various term types that were loaded, the initial term count (in the parenthesis) and how many actual circuits were generated. The number of circuits will always be less than or equal to the number of terms, since multiple terms may be collapsed on top of each other (since they describe equivalent things). These circuits are then dumped to the log file (truncated at 100 unless you use the option to ask for all of them). Here is a sampling from the water log:

Example 95: H2O log, sample term dump
Looking at the first line for pp , we see the following information:
-33.023097:This is the strength of the term after LIQUi|> has collapsed any equivalent terms together
H01,01: This is the natural ordering that the term was read in (spin-orbital numbers starting at 1

91

A01,01: This is the lexicographic ordering that the term became (spin-orbital numbers starting at 1 . Notice the second pqqr term where they're different.
[00,00]: Original orbital numbers (zero based) from the .dat file
(-pqpq, 2): In addition, a line may be followed by information on other terms that were collapsed together. In this case (the first pqqp entry shown), there were two other terms with order pqpq that were subtracted off (since flipping the last pq causes a sign to flip).
$\mathrm{h} 1, \mathrm{~h} 2, \mathrm{~h} 3$: In the case of pqrs, there are three extra value that represent the h1, h2 and h3 values described in the Whitfield, Biamonte and Aspuru-Guzik paper. These are used to build the actual circuits.

The next thing that in the output are summary gate statistics for the circuit built:

| Nest=1.54e+004 RedundBest=1.54e+004 (qubits: 15) | | | | |
| :---: | :---: | :---: | :---: | :---: |
| 0:0000.0/Combining | 15362 | tes... | | |
| 0:0000.0/ | нрр, | CTtheta: | 14 | |
| 0:0000.0/ | Hpq , | CNOT: | 88 | |
| 0:0000.0/ | Hpq, | CRz: | 28 | |
| 0:0000.0/ | Hpq , | CZ: | 24 | |
| 0:0000.0/ | Hpq, | H: | 56 | |
| 0:0000.0/ | нpq, | Ybasis: | 28 | |
| 0:0000.0/ | Hpq, | Ybasis': | 28 | |
| 0:0000.0/ | Hpqqp, | CNOT: | 182 | |
| 0:0000.0/ | Hpqqp, | CRz: | 105 | |
| 0:0000.0/ | нpqqp, | Ttheta: | 1 | |
| 0:0000.0/ | Hpqqr, | CNOT: | 2576 | |
| 0:0000.0/ | Hpqqr, | CRz: | 672 | |
| 0:0000.0/ | Hpqqr, | H: | 672 | |
| 0:0000.0/ | Hpqqr, | Ybasis: | 336 | |
| 0:0000.0/ | Hpqqr, | Ybasis': | 336 | |
| 0:0000.0/ | Hpqrs, | CNOT: | 4414 | |
| 0:0000.0/ | Hpqrs, | CRz: | 616 | |
| 0:0000.0/ | Hpqrs, | CZ: | 258 | |
| 0:0000.0/ | Hpqrs, | H: | 2464 | |
| 0:0000.0/ | Hpqrs, | Ybasis: | 1232 | |
| 0:0000.0/ | Hpqrs, | Ybasis': | 1232 | |
| Example 96: H2O log, gate statistics | | | | |

The counts: line summarizes total numbers of rotations and sequential gates. The parallel, nesting and redundant gate removal statistics are the same as the sequential ones because we didn't do any of those operations on the circuit. The system then gives a complete dump of where all the 15,362 sequential gates are used.

At this point, the molecule is grown into a single unitary matrix (which can take a long time and then is exponentiated for Trotterization and Phase Estimation. At this point, we have a complete optimized version of the circuit that we can execute any number of times to obtain the ground state energy. Typically we'll see from 10 to 20 runs depending on how numerically stable the result is.

As we phase estimate, we see the results for every bit computed:

```
0:0000.3/ >> 27: 0= 0, 4 c2= 8.0 100.0%
0:0000.3/ >> 27: 1= 4, 0 c2= 8.0 100.0% -1.5708
0:0000.3/ >> 27: 001 = 0.125000
0:0000.3/ >> 26: 0= 0, 4 c2= 8.0 100.0%
0:0000.3/ >> 25: 0= 0, 4 c2= 8.0 100.0%
```

| 000.3/ | 24: $1=$ | 1, $0 \mathrm{c2}=$ | $0.5100 .0 \%$ |
| :---: | :---: | :---: | :---: |
| 0:0000.3/ | >> 23: $0=$ | 0, $1 \mathrm{c} 2=$ | $0.5100 .0 \%$ |
| 0:0000.3/ | 22: $0=$ | 0, $1 \mathrm{c} 2=$ | $0.5100 .0 \%$ |
| 0:0000.3/ | >> 21: 0= | 0 , $1 \mathrm{c} 2=$ | $0.5100 .0 \%$ |
| 0:0000.3/ | 20: 0= | 0 , $1 \mathrm{c2}=$ | $0.5100 .0 \%$ |
| 0:0000.3/ | >> 19: 0= | 0, $1 \mathrm{c} 2=$ | $0.5100 .0 \%$ |
| 0:0000.3/ | 18: 0= | 0, $1 \mathrm{c2}=$ | $0.5100 .0 \%$ |
| 0:0000.3/ | 17: $1=$ | 1, 0 c2= | $0.5100 .0 \%$ |
| 0:0000.3/ | 16: 0= | 0, $1 \mathrm{c} 2=$ | $0.5100 .0 \%$ |
| 0:0000.3/ | 15: 0= | 0 , 1 c2= | $0.5100 .0 \%$ |
| 0:0000.3/ | 14: $1=$ | 1, 0 c2= | $0.5100 .0 \%$ |
| 0:0000.3/ | 13: 0= | 0, $1 \mathrm{c} 2=$ | $0.5100 .0 \%$ |
| 0:0000.3/ | >> 12: $1=$ | 1, 0 c2= | $0.5100 .0 \%$ |
| 0:0000.3/ | 11: $1=$ | 1, 0 c2= | $0.5100 .0 \%$ |
| 0:0000.3/ | 10: 0= | 0, $1 \mathrm{c} 2=$ | $0.5100 .0 \%$ |
| 0:0000.3/ | 9: 1= | 1, 0 c2= | $0.5100 .0 \%$ |
| 0:0000.3/ | 8: 1= | 1, 0 c2= | $0.5100 .0 \%$ |
| 0:0000.3/ | 7: 0= | 0, $1 \mathrm{c} 2=$ | $0.5100 .0 \%$ |
| 0:0000.3/ | 6: $0=$ | 0, $1 \mathrm{c2}=$ | $0.5100 .0 \%$ |
| 0:0000.3/ | 5: 1= | $1,0 \mathrm{c2}=$ | $0.5100 .0 \%$ |
| 0:0000.3/ | 4: 1= | 1, 0 c2= | $0.5100 .0 \%$ |
| 0:0000.3/ | 3: 1= | 1, 0 c2= | $0.5100 .0 \%$ |
| 0:0000.3/ | 2: 1= | $1,0 \mathrm{c2}=$ | $0.5100 .0 \%$ |
| 0:0000.3/ | 1: 1= | 1, 0 c2= | $0.5100 .0 \%$ |
| 0:0000.3/ | 0: 0= | 0, $1 \mathrm{c2}=$ | $0.5100 .0 \%$ |

Example 97: H2O log, Phase Estimation
The first 3 lines show the computation for the lowest bit. The reason there are 3 lines is that we're doing an arc-tangent calculation to obtain an extra 2 bits of accuracy (see: http://arxiv.org/abs/1304.074 on Faster Phase Estimation). After this, the lines show the bit number, whether we determined it as a 0 or a 1 , the number of times we sampled it as a 1 and the number of times we sampled it as a 0 and finally $c 2$ is the chi squared value with the percentage of time we chose the final answer.

We now are ready to output the final answer for this run:

```
0:0000.3/Result: tst= 0 info=0.9573,104.5000 Trot= 32 Order=1
    Egs=<-84.922750,-75.728698> Phi =3.0643425 prep=1,8,2,9,3,10,4,11,5,12
    bits=0.011111001i01101001000000100001
0:0000.3/!CSV,0.9573,104.5000,32,1,
    -84.922749879453500,-75.728698349136500,
    "P.011111001101101001000000100001",97.3'
0:0000.3/OCC*1.000*0.996*0.987*0.991*0.999'0.013 0.013*1.000*
    0.996*0.987*0.991*0.999 0.013 0.013
0:0000.3/State expectation: prep[00003e7c]=0.973195 big[00003e7c]=0.973195
```

> Example 98: H2O log, final result

The first line (Result) shows the parameters to the run. Next we have the computed ground state (Egs) both without and with nuclear repulsion as well as the Phase Estimated (Phi) and a listing of our initial orbitals (prep). Finally, we have the actual bits computed during phase estimation.

The second line is the most useful. It's in csv format and by pulling all of these out of the \log file, you get a nice summary of all the runs done. The fields in order are:
0.9573: This is from the . dat file part of the info field showing the hydrogen bond length.
104.5000: This is also from the info field showing the bond angle.

| 32: | Trotter Number used |
| :--- | :--- |
| 1: | Trotter Order |
| -84.9227: | Non-nuclear ground state energy |
| $-75.7287:$ | Ground state energy with nuclear repulsion |
| "P.011: | Phase estimation bits |
| 97.3: | Overlap of the prep state with the final ground state found |

The next line shows occupancies in the final ground state of the initial prep state and the last line shows the prep state expectation (with the hex bits representing the filled orbitals). The big value is which state entry has the biggest overlap with the ground state. When prep and big aren't the same bits, it says you're prep state isn't the best place to get to the ground state from.

Built-in Samples

Playing with the executable

LIQUi|> contains a number of built-in samples to allow the user to play with the system and to see application areas that LIQUi|> has been applied to (this is only a small sampling). Several of these have been described in earlier sections where their source code is available in the samples directory. This chapter documents the complete list as well as any options that are available.
_Big ent This sample takes no parameters and starts an entanglement test with 16 qubits and grows as far as it's allowed (up to 33 qubits).
_Chem chemistry See the sections relating to this function in the Quantum Chemistry sections. The simplest example would be: __Chem(H 2). For a list of available molecules, type: __Chem("").
_ChemFull chemistry See the sections relating to this function in the Quantum Chemistry sections. This is the detailed call that allows for setting of many parameters: __ChemFull("molecule", test,"opts", trot, bits,order). There is an entire section of this manual just devoted to the opts (Quantum Chemistry Options)
_Correct test Correct tests if the simulator is working correctly. It takes no arguments and simply tests Teleport on different qubits from a larger state vector and will flag if anything unexpected happens. It runs the tests in Code, Circuit and Grown modes to try all variations.
_Entangle1 ent Call __Entangle1 with the number of qubits you want to entangle (typically 10 through 22). This system will give you detailed statistics on how long it takes to do the various operations.
_Entangle2 ent

This does the same test as __Entangle1, but compiles the circuit to show the difference in timings when using optimized code.
See the Creating a script section for more details.
_Entangles ent This sample takes no parameters but runs 100 entanglement tests on 16 qubits to show the statistics on the bits measured. The should be all 1 or all 0 (each time) and in the end, approximately half should be 1 s and half 0 s.

EntEnt entropy Shows the system computing entanglement entropy in two sample different cases. The circuits are output as .htm files and the entropy for each qubit at the end is given.
_EIGS math Validates that LAPACK is installed correctly and uses zgeev to compute a Wilkinson test. There are a few cases where LIQUi|> may use LAPACK for ancillary statistics and this test validates that the functions are available.
_EPR circ Simply creates drawings of an Einstein-Podolsky-Rosen circuit (a Hadamard and a CNOT) to show simple a circuit drawing.

Ferro hamiltonian Performs the simulation of a ferromagnetic chain using a first quantized Hamiltonian. There are two arguments. Set the first to true if you want to see all the variations of the chain (Isolated, Ferro, Anti-Ferro, Freeze Up, Freeze Down, Freeze Up/Down). If the first argument is fa1se, then only the last example will run (the most interesting one). The second argument is true if you only want to run each test once, otherwise set it to false.
_JointCNOT braid There are many ways to implement a joint CNOT gate for braiding operations with joint measurement and parity control gates. This sample tests several implementation with various input combinations and shows the results. This sample is only provided to show some of the types of research that we do with LIQUi \rangle.
_Kraus qece Documented in the section Channels and POVMs. This is an example of the most sophisticated noise model in the system
_Noise1 qecc Documented in the section Noise + QECC For technical details on amplitude damping, refer to the Amplitude Damping section.
_NoiseAmp qecc See the Full Example in Advanced Noise Models.
_QECC qecc Full details may be found in the section on Stabilizers.
QFTbench math Benchmarks the QFT algorithm used inside of shor. The CSV lines are the benchmark results (the first one explains what all the fields are). The

Quantum Fourier Transform is run in each of Code, Circuit and Optimized modes to show the difference in performance. All three show time in seconds and memory used in megabytes.
_QLSA linalg
This is an example of the Quantum Linear Algebra algorithm by Harrow, Hassidim and Lloyd (http://arxiv.org/abs/0811.3171). The output includes the circuits used (created in the files QLSAO.htm (.tex) and QLSA9.htm (.tex)). If you take the CSV entries in the output and plot them, you will see a graph like the following:

Figure 23: Output from QLSA sample
_ QuAM memory
This is an example of the Quantum Associative memory algorithm by Ventura and Martinez (http://arxiv.org/abs/quant-ph/9807053). The output shows storing a number of key/value pairs (each is a 4 bit hex single digit):

| 0x04: | 6.3\% |
| :---: | :---: |
| 0x1c: | 6.3\% |
| 0x27: | 6.3\% |
| 0x39: | 6.3\% |
| 0×47 : | 6.3\% |
| $0 \times 5 \mathrm{e}$: | 6.3\% |
| 0x68: | 6.3\% |
| 0x7c: | 6.3\% |
| $0 \times 8 \mathrm{~b}$: | 6.3\% |
| 0x9b: | 6.3\% |
| 0xab: | 6.3\% |
| 0xbd: | 6.3\% |
| 0xcd: | 6.3\% |
| 0xd4: | 6.3\% |
| 0xec: | 6.3\% |
| 0xfb: | 6.3\% |

Example 99: QuAM: Storing key value pairs

Looking inside the state vector, we can see that the circuit was able to store all the items with equal probability. Now we do a Grover search for the item with key 6:

Example 100: QuAM: Searching for a key
We can see how Grover cycles through the optimal probability of finding the desired key/value pair.

QWalk page rank This is an example of the Quantum PageRank algorithm by Paparo and Martin-Delgado (http://arxiv.org/abs/1112.2079). The argument provided to the function must be one of:

| tiny: | 2 Node graph |
| :--- | :--- |
| tree: | 7 Node tree graph |
| graph: | 7 Node web graph (from the paper) |
| <path>: | Path to file that contains a specified web graph |

If you're running from the samples directory, a command line using <path> would look like:
..\bin\Liquid.exe __Qwa7k(web_4.graph)

The samples directory contains web graphs at sizes 4-9 (which are powers of 2, representing web graphs with from 16-512 vertices). You can compare the classical page range (PRank) and the quantum page rank (QRank) at the end of the output.

Ramsey 33 Ham This is an example of solving Ramsey numbers on the D-Wave machine (http://arxiv.org/abs/1201.1842). See the paper for details. The example also outputs the circuits in Ramsey33_*.htm (.tex) files.
$\mathbf{S G}$ Ham This is an example of solving a spin-glass problem with a first quantized Hamiltonian. Circuits are drawn in SG^{*}. htm (.tex). The couplings used are (1 based):
$1,5,1 ; 1,6,1 ; 1,7,-1 ; 1,8,1 ; 2,5,1 ; 2,6,-1 ; 2,7,1 ; 2,8,-1 ;$
$3,5,-1 ; 3,6,1 ; 3,1 ;-1 ; 3,8,4,5,1 ; 4,1 ; 4,-1 ; 4,8,-1 ;$
$9,13,-1 ; 9,14,-1 ; 9,15,-1 ; 16,-1 ; 10,13,1 ; 10,14,1 ; 10,15,1 ;$
$10,16,1 ; 11,13,1 ; 11,14,1 ; 11,15,-1 ; 11,16,-1 ; 12,13,-1 ;$
$12,14,1 ; 12,15,-1 ; 12,16,-1 ; 1,9,-1 ; 2,10,1 ; 3,11,1 ; 4,12,-1 ;$
__Shor factor
The Shor algorithm example takes two parameters. The first is the number to factor and the second is whether to optimize the circuit (true=optimize). See the discussion in Creating a script.
__show demo This is just a call to the LIQUi| \rangle printf equivalent. Pass it a string with surrounding double quotes and it will echo back. This is a simple way to test that the runtime is working correctly.

Steane7 QECC This a validation that the Steane7 CSS code has been implemented correctly. It will run through one single qubit error on each of the data qubits using X, Y and Z errors to validate that they will all be fixed.
_Teleport basic Implementation of the classic Teleport algorithm. See the discussion in Creating a script.
_TSP Hamiltonian Solves the traveling salesman problem. The argument is the number of cities (5 to 8). A typical final result (for 5 cities) is:

$$
\begin{aligned}
& \text { Histogram: } \\
& \text { TSP 20.0\% 1001100101 (} \mathrm{E}=-10.0379 \text {) [ones= 5] } \\
& \text { TSP } 60.0 \% 1010001110 \text { (} \mathrm{E}=-10.0618 \text {) [ones= 5] }
\end{aligned}
$$

Example 102: TSP optimizatoin result
If we plug in the edges for 1010001110 that are dumped (0 is the leftmost bit), we get:
Edge $[0]=$ sea to 1 ax is 961 miles
Edge $[2]=$ sea to ord is 1725 miles
Edge $[6]=1 \mathrm{ax}$ to dfw is 1239 miles
Edge $[7]=$ jf to ord is 742 miles
Edge $[8]=$ jfk to dfw is 1396 miles

Example 103: TSP Final Route
So the discovered route is: SEA -> LAX -> DFW -> JFK -> ORD -> SEA.
_UserSample basic This is a placeholder to show how to add user functions to the simulator. See the chapter on Serious Coding for complete information.

Index

| | Built-in Gates • 35 |
| :---: | :---: |
| ! | Built-in Samples. 96 |
| !! - 38 | |
| ! $<\cdot 39$ | C |
| | Channels and POVMs • 73 |
| : | Chem - 85, 96 |
| | ChemFull - 86, 96 |
| : Molecular Hydrogen • 84 | Chemistry Options 87 |
| | Chemistry Output • 90 |
| | Circuit 13 |
| > | circuit drawing - 23 |
| | Circuit Manipulation - 51 |
| $\begin{aligned} & >!<\cdot 38 \\ & ><\cdot 38 \end{aligned}$ | Circuit mode - 8 |
| | Circuits 33 |
| | Command Line Syntax - 16 |
| | Compriation 30 |
| A | Concepts • 11 control 48 |
| | Control Control gate - 37 |
| Accuracy - 88 | Control gate $\cdot 37$ |
| AddControl 44 | Correct 96 |
| Adiabatic 78 | Creating a script $\cdot 17$ |
| Adjoint 37 | $\mathrm{ctrl} \cdot 48$ |
| Advanced Noise Models • 66 | Custom Gates C^{40} |
| Advanced Topics - 25 | |
| Amplitude Damping • 70 | |
| Annealing Schedule $\cdot 78$ | D |
| Apply 51 | |
| attribute $\cdot 17$ | DampProb 68 |
| | Data Types 11 |
| | Decode 59 |
| B | DefaultNoise. 67 |
| | Draw 46 |
| | DropTerms 87 |
| Basic Operation 15 | Dump - 21, 52 |
| BCOp 44 (4 (| |
| Big 96 | |
| Bit Control • 36 | |
| | |
| BitCon 52 EIGS 97 | |
| Bits $\cdot 34$braiding circuits $\cdot 37$ | Empty $\cdot 52$ |
| | Entangle1 - 18, 96 |
| | |

Entangle2 • 21, 96
Entangles - 97
EntEnt $\cdot 97$
EPR• 97
Execution • 15
Ext. 51
Extending • 40

F

F\# functions • 13
factor• 24
Factoring • 24
fault tolerance - 54
faults • 54
Fermion 82
Fermionic simulation • 82
Ferro - 97
ferromagnetic • 79
FindIDs. 52
Fold•52
Function mode - 8

G

gate $\cdot 47$
Gate • 13
Gate and Qubit Operators • 38
Gate constructor 40
GateCount 52
Gates • 34
generalized measurement • 73
go 48
Grow 52
GrowGates•88
growing gates • 22
GrowPars 53

H

Hamiltonian • 7
Hamiltonian Mode • 77
HamiltonianGates 37

J

Joint Measurement • 37
JointCNOT • 97

K

Ket • 12
Kets and Qubits • 32
Kraus operators • 73

L

Label • 36
Language Integrated • 13
LIQUi|〉• 7
liquid-news. 10
LiquidTikZ.tex•47
logical qubits - 27
LQD • 17
|stick • 47

M

Main.fs•30
Majorana Fermions • 37
Manipulating Circuits - 25
Measure • 42
Measurement • 36
meter 48
Modify • 43
Morph 49
multigate $\cdot 48$

N

Native • 36
Native Debug • 36
Noise + QECC • 70, 71, 73
Noise1•72, 97
Noi seAmp • 67, 97
NoiseEvents • 66
NoiseModel • 66
NoiseStat • 66
Normal 41

0

Operations • 13
Optimization • 51
Output• 89

P

Par 51
Parity Control • 38
Physical Modeling • 7
physics • 77
POVM•73
prepares. 55
project • 30
Psi4-83
PyQuante • 83

Q

QECC • 26, 54, 55, 97
QFTbench $\cdot 97$
QLSA• 98
qswap 48
QuAM • 98
Quantum Architectures and Computation group • 10
Quantum Chemistry • 82
Quantum Chemistry package • 83
Quantum Error Correction Codes • 7, 26, 54
quantum operation 7
Qubit • 11
QWalk • 99
qwx 48

R

Ramsey33•99
real world noise • 66
References 9
Render. 52
RenderHT• 23
Rendering • 46
Reset • 36, 43
Restore • 36
Run •52, 90
runMode• 79
running • 96

S

[^0]: ${ }^{1}$ Many thanks to Aleksander Kubica for this write-up of the LIQUi \rangle amplitude damping model.

